Investigated in this paper is the generalized nonlinear Schrodinger equation with radial symmetry. With the help of symbolic computation, the one-, two-, and N-soliton solutions are obtained through the bilinear metho...Investigated in this paper is the generalized nonlinear Schrodinger equation with radial symmetry. With the help of symbolic computation, the one-, two-, and N-soliton solutions are obtained through the bilinear method. B^cklund transformation in the bilinear form is presented, through which a new solution is constructed. Graphically, we have found that the solitons are symmetric about x = O, while the soliton pulse width and amplitude will change along with the distance and time during the propagation.展开更多
Unified analytical solutions are presented for the predictions of the stresses and displacements around a circular opening based on nonqinear unified failure criterion and the elastic-brittle-plastic softening model. ...Unified analytical solutions are presented for the predictions of the stresses and displacements around a circular opening based on nonqinear unified failure criterion and the elastic-brittle-plastic softening model. Unified analytical solutions not only involve generally traditional solutions which are based on the Hock-Brown (H-B) failure criterion or the non-linear twin-shear failure criterion, but also involve other new results. The results of the radius of plastic zone, radial displacements and stresses are obviously different using three rock masses when different values of the unified failure criterion parameter or different material behavior models are used. For a given condition, the radius of plastic zone and radial displacements are reduced by increasing the unified failure criterion parameter. The latent potentialities of rock mass result from considering the effect of intermediate principal stress. It is shown that proper choices of the failure criterion and the material behavior model for rock mass are significant in the tunnel design.展开更多
基金Supported by the National Natural Science Foundation of China under Grant No.60772023the Open Fund (No.BUAASKLSDE-09KF-04)+2 种基金Supported Project (No.SKLSDE-2010ZX-07) of the State Key Laboratory of Software Development Environment,Beijing University of Aeronautics and Astronauticsthe National Basic Research Program of China (973 Program) under Grant No.2005CB321901the Specialized Research Fund for the Doctoral Program of Higher Education under Grant No.200800130006,Chinese Ministry of Education
文摘Investigated in this paper is the generalized nonlinear Schrodinger equation with radial symmetry. With the help of symbolic computation, the one-, two-, and N-soliton solutions are obtained through the bilinear method. B^cklund transformation in the bilinear form is presented, through which a new solution is constructed. Graphically, we have found that the solitons are symmetric about x = O, while the soliton pulse width and amplitude will change along with the distance and time during the propagation.
基金Project (No.SJ08E204) supported by the Natural Science Foundation of Shanxi Province,China
文摘Unified analytical solutions are presented for the predictions of the stresses and displacements around a circular opening based on nonqinear unified failure criterion and the elastic-brittle-plastic softening model. Unified analytical solutions not only involve generally traditional solutions which are based on the Hock-Brown (H-B) failure criterion or the non-linear twin-shear failure criterion, but also involve other new results. The results of the radius of plastic zone, radial displacements and stresses are obviously different using three rock masses when different values of the unified failure criterion parameter or different material behavior models are used. For a given condition, the radius of plastic zone and radial displacements are reduced by increasing the unified failure criterion parameter. The latent potentialities of rock mass result from considering the effect of intermediate principal stress. It is shown that proper choices of the failure criterion and the material behavior model for rock mass are significant in the tunnel design.