A novel approximation of the two-dimensional (2D) potential function perpendicular to the channel is proposed,and then an analytical threshold voltage model for a fully depleted SOI-MOSFET with a non-uniform Gaussia...A novel approximation of the two-dimensional (2D) potential function perpendicular to the channel is proposed,and then an analytical threshold voltage model for a fully depleted SOI-MOSFET with a non-uniform Gaussian distribution doping profile is given based on this approximation. The model agrees well with numerical simulation by MEDICI. The result represents a new way and some reference points in analyzing and controlling the threshold voltage of non-uniform fully depleted (FD) SOI devices in practice.展开更多
The low-temperature measurement of Hall effect of the two-dimensional electron system in a double-layered gated Si-δ-doped GaAs is presented.A complex peculiar nonlinear dependence of the depletion on gate voltage i...The low-temperature measurement of Hall effect of the two-dimensional electron system in a double-layered gated Si-δ-doped GaAs is presented.A complex peculiar nonlinear dependence of the depletion on gate voltage is observed.The nonlinearity is also explained on the basis of the assumption that the double-capacity model consists of two δ-doped two-dimensional electron layers and a metallic gate,and the experimental result that the electron mobility is linear with the electron density on a log-log scale.展开更多
Alloying Pt with transition metals can significantly improve the catalytic properties for the oxygen reduction reaction(ORR).However,the application of Pt-transition metal alloys in fuel cells is largely limited by po...Alloying Pt with transition metals can significantly improve the catalytic properties for the oxygen reduction reaction(ORR).However,the application of Pt-transition metal alloys in fuel cells is largely limited by poor long-term durability because transition metals can easily leach.In this study,we developed a nonmetallic doping approach and prepared a P-doped Pt catalyst with excellent durability for the ORR.Carbon-supported core-shell nanoparticles with a P-doped Pt core and Pt shell(denoted as PtPx@Pt/C)were synthesized via heat-treatment phosphorization of commercial Pt/C,followed by acid etching.Compositional analysis using electron energy loss spectroscopy and X-ray photoelectron spectroscopy clearly demonstrated that Pt was enriched in the near-surface region(approximately 1 nm)of the carbon-supported core-shell nanoparticles.Owning to P doping,the ORR specific activity and mass activity of the PtP_(1.4)@Pt/C catalyst were as high as 0.62 mA cm^(–2)and 0.31 mAμgPt–^(1),respectively,at 0.90 V,and they were enhanced by 2.8 and 2.1 times,respectively,in comparison with the Pt/C catalyst.More importantly,PtP_(1.4)@Pt/C exhibited superior stability with negligible mass activity loss(6%after 30000 potential cycles and 25%after 90000 potential cycles),while Pt/C lost 46%mass activity after 30000 potential cycles.The high ORR activity and durability were mainly attributed to the core-shell nanostructure,the electronic structure effect,and the resistance of Pt nanoparticles against aggregation,which originated from the enhanced ability of the PtP_(1.4)@Pt to anchor to the carbon support.This study provides a new approach for constructing nonmetal-doped Pt-based catalysts with excellent activity and durability for the ORR.展开更多
The effect of different molar ratios of Y2O3 and Y(NO3)3 on the microstructure and electrical response of ZnO-Bi203-based varistor ceramics sintered at 1 000 ℃ was investigated, and the mechanism by which this dopi...The effect of different molar ratios of Y2O3 and Y(NO3)3 on the microstructure and electrical response of ZnO-Bi203-based varistor ceramics sintered at 1 000 ℃ was investigated, and the mechanism by which this doping improves the electrical characteristics of ZnO-Bi203-based varistor ceramics was discussed. With increasing amounts of Y(NO3)3 or Y2O3 in the starting composition, Y2O3, Sb204 and Y-containing Bi-rich phase form, and the average grain size significantly decreases. The average grain size significantly decreases as the contents of rare earth compounds of Y(NO3)3 or Y2O3 increase. The maximum value of the nonlinear coefficient is found at 0.16% Y(NO3)3 or 0.02% YaO3 (molar fraction) doped varistor ceramics, and there is an increase of 122% or 35% compared with the varistor ceramics without Y(NO3)3 or Y2O3. The threshold voltage VT of Y(NO3)3 and Y2O3 reaches at 1 460 V/mm and 1 035 V/ram, respectively. The results also show that varistor sample doped with Y(NO3)3 has a remarkably more homogeneous and denser microstructure in comparison to the sample doped with Y2O3.展开更多
There are prominent nonlinear characteristics that we hope for the semiconductor nano-clusters doped fiber. Refractive index of fiber core can be effectively changed by adulteration. This technology can provide a new ...There are prominent nonlinear characteristics that we hope for the semiconductor nano-clusters doped fiber. Refractive index of fiber core can be effectively changed by adulteration. This technology can provide a new method for developing photons components. Because the semiconductor nano-cluster has quantum characteristics, Based on first-order perturba- tion theory and classical theory of fiber, we deduced refractive index expressions of fiber core, which was semiconductor nano-cluster doped fiber. Finally, third-order nonlinear coefficient equation was gained. Using this equation, we calculated SMF-28 fiber nonlinear coefficient. The equation shows that new third-order coefficient was greater.展开更多
A support(denoted AM) was prepared using pseudo-boehmite and mordenite.Ni-B and NiPtB amorphous catalysts were prepared on the support by the impregnation method followed by chemical reduction with a KBH4 solution.And...A support(denoted AM) was prepared using pseudo-boehmite and mordenite.Ni-B and NiPtB amorphous catalysts were prepared on the support by the impregnation method followed by chemical reduction with a KBH4 solution.And the catalysts were characterized by X-ray diffraction(XRD),environment scanning electron microscope(ESEM),inductively coupled plasma(ICP),H2-temperature programmed reduction(H2-TPR),differential thermal analysis(DTA),and BET.Benzene hydrogenation was used as a probe reaction to evaluate the effect of addition of small quantities of Pt on the NiB/AM catalyst.The results show that Pt can promote the reduction of NiO and the formation of active sites,leading to smaller catalyst particles and better dispersion of active metal particles on the support.The catalytic activity,sulfur resistance and thermal stability were remarkably improved by Pt doping of the NiB/AM catalyst.展开更多
A new anthracene derivative 9,10-bis[3,5-di(4-tert-butylphenyl)phenyl]anthracene (BPPA) was synthesized via Suzuki coupling reaction and characterized by 1H NMR spectrum,mass spectrum,and elemental analysis.BPPA exhib...A new anthracene derivative 9,10-bis[3,5-di(4-tert-butylphenyl)phenyl]anthracene (BPPA) was synthesized via Suzuki coupling reaction and characterized by 1H NMR spectrum,mass spectrum,and elemental analysis.BPPA exhibits deep-blue emission both in solution and in solid thin film.This compound has a non-planar structure that results in high thermal stability and the phenomenon of polymorphism.The non-doped device based on this material shows stable deep-blue emission with the 1931 Commission international de I'Eclairage (CIE) coordinate of (0.15,0.05) under different applied voltages.The device exhibits the maximum external quantum efficiency of 2.2% at 14.9 mA/cm2 with luminance of 105 cd/m2.展开更多
A kind of efficient non-doped white organic light-emitting diodes(WOLEDs) were realized by using a bright blue-emitting layer of 4,4-bis(2,2-diphenylvinyl)-1,1-biphenyl(DPVBi) combining with red emitting ultrathin lay...A kind of efficient non-doped white organic light-emitting diodes(WOLEDs) were realized by using a bright blue-emitting layer of 4,4-bis(2,2-diphenylvinyl)-1,1-biphenyl(DPVBi) combining with red emitting ultrathin layer of [2-methyl-6-[2-(2,3,6,7-tetrahydro-1H,5H-benzo[ij]quinolizin-9-yl)ethenyl]-4H-pyran-4-ylidene]propane-dinitrile(DCM2) and green emitting ultrathin layer of 10-(2-benzothiazolyl)-2,3,6,7-tetrahydro-1,1,7,7-tetramethyl-1H,5H, 11H(1)-benzopyropyrano(6,7-8-i,j)quinolizin-11-one(C545T) with different thicknesses of 0.05 nm, 0.10 nm and 0.20 nm. For comparing, a doped WOLED was also fabricated, in which C545 T and DCM2 are codoped into DPVBi layer to provide blue, green and red emission for obtaining white emission. The maximum luminance and power efficiency of the doped WOLED are 5 765 cd/m^2 at 16 V and 5.23 lm/W at 5 V, respectively, and its Commission Internationale de l'Eclairage(CIE) coordinate changes from(0.393 7, 0.445 3) at 5 V to(0.300 7, 0.373 8) at 12 V. When the thickness of the ultrathin C545 T layer in non-doped WLEDs increases, the emission luminance increases, but all non-doped devices are in the yellow white region. The device with 0.10-nm-thick C545 T has a maximum efficiency of 15.23 cd/A at 8 V and a maximum power efficiency of 6.51 lm/W at 7 V, and its maximum luminance is 10 620 cd/m^2 at 16 V. CIE coordinates of non-doped WLEDs with C545 T thickness of 0.05 nm, 0.10 nm and 0.20 nm are(0.447 3, 0.455 6),(0.464 0, 0.473 1) and(0.458 4, 0.470 0) at 8 V, respectively.展开更多
Heteroatom-doped carbon materials as alternative catalysts for oxygen reduction reaction(ORR)have drawn increasing attention due to their tunable chemical and electronic structures for achieving high activity and stab...Heteroatom-doped carbon materials as alternative catalysts for oxygen reduction reaction(ORR)have drawn increasing attention due to their tunable chemical and electronic structures for achieving high activity and stability. However, there still remains a great challenge to fabricate porous heteroatoms dual-doped carbons with uniformly doping in a facile and controllable way. Herein,imidazole/imidazolium-functionalized metal-organic frameworks(MOFs) are employed as precursors and templates to achieve porous nitrogen and halogen dual-doped nanocarbons. Among these carbon materials, the as-prepared nitrogen/bromine dual-doped catalyst BrNC-800 exhibits the best ORR performance with a positive half-wave potential at 0.80 V(vs. RHE) in 0.1 mol L-1 KOH, which is comparable to the benchmark commercial 20 wt% Pt/C catalyst. BrNC-800 shows excellent long term stability and methanol tolerance.This work provides a facile approach to fabricate highly efficient heteroatoms dual-doped carbon catalysts for energy conversion.展开更多
文摘A novel approximation of the two-dimensional (2D) potential function perpendicular to the channel is proposed,and then an analytical threshold voltage model for a fully depleted SOI-MOSFET with a non-uniform Gaussian distribution doping profile is given based on this approximation. The model agrees well with numerical simulation by MEDICI. The result represents a new way and some reference points in analyzing and controlling the threshold voltage of non-uniform fully depleted (FD) SOI devices in practice.
文摘The low-temperature measurement of Hall effect of the two-dimensional electron system in a double-layered gated Si-δ-doped GaAs is presented.A complex peculiar nonlinear dependence of the depletion on gate voltage is observed.The nonlinearity is also explained on the basis of the assumption that the double-capacity model consists of two δ-doped two-dimensional electron layers and a metallic gate,and the experimental result that the electron mobility is linear with the electron density on a log-log scale.
文摘Alloying Pt with transition metals can significantly improve the catalytic properties for the oxygen reduction reaction(ORR).However,the application of Pt-transition metal alloys in fuel cells is largely limited by poor long-term durability because transition metals can easily leach.In this study,we developed a nonmetallic doping approach and prepared a P-doped Pt catalyst with excellent durability for the ORR.Carbon-supported core-shell nanoparticles with a P-doped Pt core and Pt shell(denoted as PtPx@Pt/C)were synthesized via heat-treatment phosphorization of commercial Pt/C,followed by acid etching.Compositional analysis using electron energy loss spectroscopy and X-ray photoelectron spectroscopy clearly demonstrated that Pt was enriched in the near-surface region(approximately 1 nm)of the carbon-supported core-shell nanoparticles.Owning to P doping,the ORR specific activity and mass activity of the PtP_(1.4)@Pt/C catalyst were as high as 0.62 mA cm^(–2)and 0.31 mAμgPt–^(1),respectively,at 0.90 V,and they were enhanced by 2.8 and 2.1 times,respectively,in comparison with the Pt/C catalyst.More importantly,PtP_(1.4)@Pt/C exhibited superior stability with negligible mass activity loss(6%after 30000 potential cycles and 25%after 90000 potential cycles),while Pt/C lost 46%mass activity after 30000 potential cycles.The high ORR activity and durability were mainly attributed to the core-shell nanostructure,the electronic structure effect,and the resistance of Pt nanoparticles against aggregation,which originated from the enhanced ability of the PtP_(1.4)@Pt to anchor to the carbon support.This study provides a new approach for constructing nonmetal-doped Pt-based catalysts with excellent activity and durability for the ORR.
基金Project(BK2011243) supported by the Natural Science Foundation of Jiangsu Province, ChinaProject(EIPE11204) supported by the State Key Laboratory of Electrical Insulation and Power Equipment, China+4 种基金Project(KF201104) supported by the State Key Laboratory of New Ceramic and Fine Processing, ChinaProject(KFJJ201105) supported by the Opening Program of State key Laboratory of Electronic Thin Films and Integrated Devices, ChinaProject(2011-22) supported by the State Key Laboratory of Inorganic Synthesis and Preparative Chemistry of Jilin University, ChinaProject(10KJD430002) supported by the Universities Natural Science Research Project of Jiangsu Province, ChinaProject(11JDG084) supported by the Research Foundation of Jiangsu University, China
文摘The effect of different molar ratios of Y2O3 and Y(NO3)3 on the microstructure and electrical response of ZnO-Bi203-based varistor ceramics sintered at 1 000 ℃ was investigated, and the mechanism by which this doping improves the electrical characteristics of ZnO-Bi203-based varistor ceramics was discussed. With increasing amounts of Y(NO3)3 or Y2O3 in the starting composition, Y2O3, Sb204 and Y-containing Bi-rich phase form, and the average grain size significantly decreases. The average grain size significantly decreases as the contents of rare earth compounds of Y(NO3)3 or Y2O3 increase. The maximum value of the nonlinear coefficient is found at 0.16% Y(NO3)3 or 0.02% YaO3 (molar fraction) doped varistor ceramics, and there is an increase of 122% or 35% compared with the varistor ceramics without Y(NO3)3 or Y2O3. The threshold voltage VT of Y(NO3)3 and Y2O3 reaches at 1 460 V/mm and 1 035 V/ram, respectively. The results also show that varistor sample doped with Y(NO3)3 has a remarkably more homogeneous and denser microstructure in comparison to the sample doped with Y2O3.
基金the National Natural Science Foundation* This workis supported by the National Natural Science Foundationof China (Grant No 60544002 and 60477032)
文摘There are prominent nonlinear characteristics that we hope for the semiconductor nano-clusters doped fiber. Refractive index of fiber core can be effectively changed by adulteration. This technology can provide a new method for developing photons components. Because the semiconductor nano-cluster has quantum characteristics, Based on first-order perturba- tion theory and classical theory of fiber, we deduced refractive index expressions of fiber core, which was semiconductor nano-cluster doped fiber. Finally, third-order nonlinear coefficient equation was gained. Using this equation, we calculated SMF-28 fiber nonlinear coefficient. The equation shows that new third-order coefficient was greater.
基金Supported by the Overseas Scholars of Heilongjiang Province of China (1151hq006)
文摘A support(denoted AM) was prepared using pseudo-boehmite and mordenite.Ni-B and NiPtB amorphous catalysts were prepared on the support by the impregnation method followed by chemical reduction with a KBH4 solution.And the catalysts were characterized by X-ray diffraction(XRD),environment scanning electron microscope(ESEM),inductively coupled plasma(ICP),H2-temperature programmed reduction(H2-TPR),differential thermal analysis(DTA),and BET.Benzene hydrogenation was used as a probe reaction to evaluate the effect of addition of small quantities of Pt on the NiB/AM catalyst.The results show that Pt can promote the reduction of NiO and the formation of active sites,leading to smaller catalyst particles and better dispersion of active metal particles on the support.The catalytic activity,sulfur resistance and thermal stability were remarkably improved by Pt doping of the NiB/AM catalyst.
基金supported by the National Natural Science Foundation of China (50773090,50825304,51033007)
文摘A new anthracene derivative 9,10-bis[3,5-di(4-tert-butylphenyl)phenyl]anthracene (BPPA) was synthesized via Suzuki coupling reaction and characterized by 1H NMR spectrum,mass spectrum,and elemental analysis.BPPA exhibits deep-blue emission both in solution and in solid thin film.This compound has a non-planar structure that results in high thermal stability and the phenomenon of polymorphism.The non-doped device based on this material shows stable deep-blue emission with the 1931 Commission international de I'Eclairage (CIE) coordinate of (0.15,0.05) under different applied voltages.The device exhibits the maximum external quantum efficiency of 2.2% at 14.9 mA/cm2 with luminance of 105 cd/m2.
基金supported by the Major Project of Science and Technology Office of Fujian Province of China(No.2014H0042)the Natural Science Foundation of Fujian Province of China(No.2015J01664)+1 种基金the Project of Science and Technology Research of Quanzhou in Fujian Province of China(Nos.2013Z125 and 2014Z137)the 2016 Annual National or Ministries of the Quanzhou Normal University Prepare Research Foundation Project(No.2016YYKJ21)
文摘A kind of efficient non-doped white organic light-emitting diodes(WOLEDs) were realized by using a bright blue-emitting layer of 4,4-bis(2,2-diphenylvinyl)-1,1-biphenyl(DPVBi) combining with red emitting ultrathin layer of [2-methyl-6-[2-(2,3,6,7-tetrahydro-1H,5H-benzo[ij]quinolizin-9-yl)ethenyl]-4H-pyran-4-ylidene]propane-dinitrile(DCM2) and green emitting ultrathin layer of 10-(2-benzothiazolyl)-2,3,6,7-tetrahydro-1,1,7,7-tetramethyl-1H,5H, 11H(1)-benzopyropyrano(6,7-8-i,j)quinolizin-11-one(C545T) with different thicknesses of 0.05 nm, 0.10 nm and 0.20 nm. For comparing, a doped WOLED was also fabricated, in which C545 T and DCM2 are codoped into DPVBi layer to provide blue, green and red emission for obtaining white emission. The maximum luminance and power efficiency of the doped WOLED are 5 765 cd/m^2 at 16 V and 5.23 lm/W at 5 V, respectively, and its Commission Internationale de l'Eclairage(CIE) coordinate changes from(0.393 7, 0.445 3) at 5 V to(0.300 7, 0.373 8) at 12 V. When the thickness of the ultrathin C545 T layer in non-doped WLEDs increases, the emission luminance increases, but all non-doped devices are in the yellow white region. The device with 0.10-nm-thick C545 T has a maximum efficiency of 15.23 cd/A at 8 V and a maximum power efficiency of 6.51 lm/W at 7 V, and its maximum luminance is 10 620 cd/m^2 at 16 V. CIE coordinates of non-doped WLEDs with C545 T thickness of 0.05 nm, 0.10 nm and 0.20 nm are(0.447 3, 0.455 6),(0.464 0, 0.473 1) and(0.458 4, 0.470 0) at 8 V, respectively.
基金the financial support from the National Key Research and Development Program of China (2018YFA0208600)National Basic Research Program of China (973 Program, 2014CB845605)+3 种基金Key Research Program of Frontier Science, Chinese Academy of Sciences (QYZDJ-SSW-SLH045)Strategic Priority Research Program of the Chinese Academy of Sciences (XDB20000000)National Natural Science Foundation of China (21671188, 21871263, 21521061 and 21331006)Youth Innovation Promotion Association,Chinese Academy of Sciences (2014265)
文摘Heteroatom-doped carbon materials as alternative catalysts for oxygen reduction reaction(ORR)have drawn increasing attention due to their tunable chemical and electronic structures for achieving high activity and stability. However, there still remains a great challenge to fabricate porous heteroatoms dual-doped carbons with uniformly doping in a facile and controllable way. Herein,imidazole/imidazolium-functionalized metal-organic frameworks(MOFs) are employed as precursors and templates to achieve porous nitrogen and halogen dual-doped nanocarbons. Among these carbon materials, the as-prepared nitrogen/bromine dual-doped catalyst BrNC-800 exhibits the best ORR performance with a positive half-wave potential at 0.80 V(vs. RHE) in 0.1 mol L-1 KOH, which is comparable to the benchmark commercial 20 wt% Pt/C catalyst. BrNC-800 shows excellent long term stability and methanol tolerance.This work provides a facile approach to fabricate highly efficient heteroatoms dual-doped carbon catalysts for energy conversion.