A non-isothermal injection molding process for a non-Newtonian viscous pseudoplastic fluid is simulated.A conservative interface capturing technique and the flow field solving method are coupled to perform a dynamic s...A non-isothermal injection molding process for a non-Newtonian viscous pseudoplastic fluid is simulated.A conservative interface capturing technique and the flow field solving method are coupled to perform a dynamic simulation.The validity of the numerical method is verified by a benchmark problem.The melt interface evolution versus time is captured and the physical quantities such as temperature,velocity and pressure at each time step are obtained with corresponding analysis.A"frozen skin"layer with the thickness increasing versus time during the injection process is found.The fact that the"frozen skin"layer can be reduced by increasing the injection velocity is numerically verified.The fountain flow phenomenon near the melt interface is also captured.Moreover,comparisons with the non-isothermal Newtonian case show that the curvatures of the interface arcs and the pressure contours near the horizontal mid-line of the cavity for the non-Newtonian pseudoplastic case is larger than that for the Newtonian case.The velocity profiles are different at different positions for the non-Newtonian pseudoplastic case,while in the case of Newtonian flow the velocity profiles are parabolic and almost the same at different positions.展开更多
A distinct type of nonlinear internal-wave packet, with the largest internal solitary wave in the middle of the packet, was regularly observed in the South China Sea during the Asian Seas International Acoustics Exper...A distinct type of nonlinear internal-wave packet, with the largest internal solitary wave in the middle of the packet, was regularly observed in the South China Sea during the Asian Seas International Acoustics Experiment in 2001. Data analysis shows that the occurrence of the distinct internal wave packet is closely related with the occurrence of lower-high internal tides; the internal tides are mixed in the experimental area and, thus, there is diurnal inequality between the heights of two neighboring internal tides. Modeling of internal tides and internal solitary waves in a shoaling situation suggests that this type of wave packet can be generated in the South China Sea by the large shoaling of internal solitary waves and internal tides. Both the internal solitary waves and the internal tides come from the direction of Luzon Strait. The initial large internal solitary waves contribute to the occurrence of the largest internal solitary wave in the middle of the packet and the waves behind the largest intemal solitary wave, while the shoaling internal tides bring about the nonlinear internal waves in front of the largest internal solitary wave via interaction with the local shelf topography.展开更多
A nonlinear numerical model was developed to analyze reinforced concrete columns under combined axial load and bending up to failure. Results of reinforced concrete columns under eccentric compression tested to failur...A nonlinear numerical model was developed to analyze reinforced concrete columns under combined axial load and bending up to failure. Results of reinforced concrete columns under eccentric compression tested to failure are presented and compared to results from a numerical nonlinear model. The tests involved 10 columns with cross-section of 250 mm × 120 mm, geometrical reinforcement ratio of 1.57% and concrete with compression strength around 40 MPa, with 3,000 mm in length. The main variable was the load eccentricity in the direction of the smaller dimension of cross-section. Experimental results of ultimate load and of the evolution of transverse displacements and concrete strains are compared with the numerical results. The estimated results obtained by the numerical model are close to the experimental ones, being suitable for use in verification of elements under combined axial load and bending.展开更多
In this paper, some corrections was made to the assumption that the forcing is quasi-static, which is the basis of the nonlinear diabatic initialization scheme adopted by a global model T106L19. Thus the tidal signal ...In this paper, some corrections was made to the assumption that the forcing is quasi-static, which is the basis of the nonlinear diabatic initialization scheme adopted by a global model T106L19. Thus the tidal signal is expressed and excluded from the initialization scheme. It shows that the new scheme captures the semi-diurnal pressure variation and is much closer to the uninitialized field. Compared with the standard initialization scheme, both the anomaly correlation coefficients and RMS of 500 hPa geopotential height simulated under the new scheme have improved significantly.展开更多
In the present analysis, several parameters used in a numerical simulation are investigated in an integrated study to obtain their influence on the process and results of this simulation. The parameters studied are el...In the present analysis, several parameters used in a numerical simulation are investigated in an integrated study to obtain their influence on the process and results of this simulation. The parameters studied are element formulation, friction coefficient, and material model. Numerical simulations using the non-linear finite element method are conducted to produce virtual experimental data for several collision scenarios. Pattern and size damages caused by collision in a real accident case are assumed as real experimental data, and these are used to validate the method. The element model study performed indicates that the Belytschko-Tsay element formulation should be recommended for use in virtual experiments. It is recommended that the real value of the friction coefficient for materials involved is applied in simulations. For the study of the material model, the application of materials with high yield strength is recommended for use in the side hull structure.展开更多
This paper concerns the real time control of the boundary layer on an aircraft wing. This new approach consists in heating the surface in an unsteady regime using electrically resistant strips embedded in the wing ski...This paper concerns the real time control of the boundary layer on an aircraft wing. This new approach consists in heating the surface in an unsteady regime using electrically resistant strips embedded in the wing skin. The control of the boundary layer's separation and transition point will provide a reduction in friction drag, and hence a reduction in fuel consumption. This new method consists in applying the required thermal power in the different strips in order to ensure the desired temperatures on the aircraft wing. We also have to determine the optimum size of these strips (length, width and distance between two strips). This implies finding the best mathematical model corresponding to the physics enabling us to facilitate the calculation for any type of material used for the wings. Secondly, the heating being unsteady, and, as during a flight the flow conditions or the ambient temperatures vary, the thermal power needed changes and must be chosen as fast as possible in order to ensure optimal operating conditions.展开更多
Abstract Tidal current energy is renewable and sustainable, which is a promising altemative energy resource for the future elec- tricity supply. The straight-bladed vertical-axis turbine is regarded as a useful tool t...Abstract Tidal current energy is renewable and sustainable, which is a promising altemative energy resource for the future elec- tricity supply. The straight-bladed vertical-axis turbine is regarded as a useful tool to capture the tidal current energy especially under low-speed conditions. A 2D unsteady numerical model based on Ansys-Fluent 12.0 is established to conduct the numerical simulation, which is validated by the corresponding experimental data. For the unsteady calculations, the SST model, 2x 105 and 0.01 s are se- lected as the proper turbulence model, mesh number, and time step, respectively. Detailed contours of the velocity distributions around the rotor blade foils have been provided for a flow field analysis. The tip speed ratio (TSR) determines the azimuth angle of the appearance of the torque peak, which occurs once for a blade in a single revolution. It is also found that simply increasing the incident flow velocity could not improve the turbine performance accordingly. The peaks of the averaged power and torque coeffi- cients appear at TSRs of 2.1 and 1.8, respectively. Furthermore, several shapes of the duct augmentation are proposed to improve the turbine performance by contracting the flow path gradually from the open mouth of the duct to the rotor. The duct augmentation can significantly enhance the power and torque output. Furthermore, the elliptic shape enables the best performance of the turbine. The numerical results prove the capability of the present 2D model for the unsteady hydrodynamics and an operating performance analy- sis of the vertical tidal stream turbine.展开更多
基金Supported by the National Natural Science Foundation of China(10871159) the National Basic Research Program of China(2005CB321704)
文摘A non-isothermal injection molding process for a non-Newtonian viscous pseudoplastic fluid is simulated.A conservative interface capturing technique and the flow field solving method are coupled to perform a dynamic simulation.The validity of the numerical method is verified by a benchmark problem.The melt interface evolution versus time is captured and the physical quantities such as temperature,velocity and pressure at each time step are obtained with corresponding analysis.A"frozen skin"layer with the thickness increasing versus time during the injection process is found.The fact that the"frozen skin"layer can be reduced by increasing the injection velocity is numerically verified.The fountain flow phenomenon near the melt interface is also captured.Moreover,comparisons with the non-isothermal Newtonian case show that the curvatures of the interface arcs and the pressure contours near the horizontal mid-line of the cavity for the non-Newtonian pseudoplastic case is larger than that for the Newtonian case.The velocity profiles are different at different positions for the non-Newtonian pseudoplastic case,while in the case of Newtonian flow the velocity profiles are parabolic and almost the same at different positions.
基金Supported by the National Basic Research Program of China (973 Program, No. 2007CB416605)the Office of Naval Research (ONR) (No. N00014-03-0337)+1 种基金the National Aeronautics and Space Administration (No. NAG5-11773)the National Oceanic and Atmospheric Administration (No. NA17EC2449)
文摘A distinct type of nonlinear internal-wave packet, with the largest internal solitary wave in the middle of the packet, was regularly observed in the South China Sea during the Asian Seas International Acoustics Experiment in 2001. Data analysis shows that the occurrence of the distinct internal wave packet is closely related with the occurrence of lower-high internal tides; the internal tides are mixed in the experimental area and, thus, there is diurnal inequality between the heights of two neighboring internal tides. Modeling of internal tides and internal solitary waves in a shoaling situation suggests that this type of wave packet can be generated in the South China Sea by the large shoaling of internal solitary waves and internal tides. Both the internal solitary waves and the internal tides come from the direction of Luzon Strait. The initial large internal solitary waves contribute to the occurrence of the largest internal solitary wave in the middle of the packet and the waves behind the largest intemal solitary wave, while the shoaling internal tides bring about the nonlinear internal waves in front of the largest internal solitary wave via interaction with the local shelf topography.
文摘A nonlinear numerical model was developed to analyze reinforced concrete columns under combined axial load and bending up to failure. Results of reinforced concrete columns under eccentric compression tested to failure are presented and compared to results from a numerical nonlinear model. The tests involved 10 columns with cross-section of 250 mm × 120 mm, geometrical reinforcement ratio of 1.57% and concrete with compression strength around 40 MPa, with 3,000 mm in length. The main variable was the load eccentricity in the direction of the smaller dimension of cross-section. Experimental results of ultimate load and of the evolution of transverse displacements and concrete strains are compared with the numerical results. The estimated results obtained by the numerical model are close to the experimental ones, being suitable for use in verification of elements under combined axial load and bending.
基金Scientific research project for the 10th five-year economic development period(2001BA607B02) a project from the Chinese Academy of Meteorological Sciences (7046/2001-9Y-2)
文摘In this paper, some corrections was made to the assumption that the forcing is quasi-static, which is the basis of the nonlinear diabatic initialization scheme adopted by a global model T106L19. Thus the tidal signal is expressed and excluded from the initialization scheme. It shows that the new scheme captures the semi-diurnal pressure variation and is much closer to the uninitialized field. Compared with the standard initialization scheme, both the anomaly correlation coefficients and RMS of 500 hPa geopotential height simulated under the new scheme have improved significantly.
文摘In the present analysis, several parameters used in a numerical simulation are investigated in an integrated study to obtain their influence on the process and results of this simulation. The parameters studied are element formulation, friction coefficient, and material model. Numerical simulations using the non-linear finite element method are conducted to produce virtual experimental data for several collision scenarios. Pattern and size damages caused by collision in a real accident case are assumed as real experimental data, and these are used to validate the method. The element model study performed indicates that the Belytschko-Tsay element formulation should be recommended for use in virtual experiments. It is recommended that the real value of the friction coefficient for materials involved is applied in simulations. For the study of the material model, the application of materials with high yield strength is recommended for use in the side hull structure.
文摘This paper concerns the real time control of the boundary layer on an aircraft wing. This new approach consists in heating the surface in an unsteady regime using electrically resistant strips embedded in the wing skin. The control of the boundary layer's separation and transition point will provide a reduction in friction drag, and hence a reduction in fuel consumption. This new method consists in applying the required thermal power in the different strips in order to ensure the desired temperatures on the aircraft wing. We also have to determine the optimum size of these strips (length, width and distance between two strips). This implies finding the best mathematical model corresponding to the physics enabling us to facilitate the calculation for any type of material used for the wings. Secondly, the heating being unsteady, and, as during a flight the flow conditions or the ambient temperatures vary, the thermal power needed changes and must be chosen as fast as possible in order to ensure optimal operating conditions.
基金the financial support provided by the National Natural Science Foundation of China (51279190 and 51311140259)National High Technology Research and Development Program of China (863 Project,2012AA052601)+2 种基金Shandong Natural Science Funds for Distinguished Young Scholar (JQ201314)Qingdao Municipal Science & Technology Program (13-4-1-38hy and 14-9-1-5-hy)the Program of Introducing Talents of Discipline to Universities (111 Project,B14028)
文摘Abstract Tidal current energy is renewable and sustainable, which is a promising altemative energy resource for the future elec- tricity supply. The straight-bladed vertical-axis turbine is regarded as a useful tool to capture the tidal current energy especially under low-speed conditions. A 2D unsteady numerical model based on Ansys-Fluent 12.0 is established to conduct the numerical simulation, which is validated by the corresponding experimental data. For the unsteady calculations, the SST model, 2x 105 and 0.01 s are se- lected as the proper turbulence model, mesh number, and time step, respectively. Detailed contours of the velocity distributions around the rotor blade foils have been provided for a flow field analysis. The tip speed ratio (TSR) determines the azimuth angle of the appearance of the torque peak, which occurs once for a blade in a single revolution. It is also found that simply increasing the incident flow velocity could not improve the turbine performance accordingly. The peaks of the averaged power and torque coeffi- cients appear at TSRs of 2.1 and 1.8, respectively. Furthermore, several shapes of the duct augmentation are proposed to improve the turbine performance by contracting the flow path gradually from the open mouth of the duct to the rotor. The duct augmentation can significantly enhance the power and torque output. Furthermore, the elliptic shape enables the best performance of the turbine. The numerical results prove the capability of the present 2D model for the unsteady hydrodynamics and an operating performance analy- sis of the vertical tidal stream turbine.