For the time-dependent harmonic oscillator and generalized harmonic oscillator with or without external forces in non-commutative space, wave functions, and geometric phases are derived using the Lewis-Riesenfeld inva...For the time-dependent harmonic oscillator and generalized harmonic oscillator with or without external forces in non-commutative space, wave functions, and geometric phases are derived using the Lewis-Riesenfeld invariant. Coherent states are obtedned as the ground state of the forced system. Quantum fluctuations are calculated too. It is seen that geometric phases and quantum fluctuations are greatly affected by the non-commutativity of the space.展开更多
We investigate the Painleve integrabiiity of nonautonomous nonlinear Schr6dinger (NLS) equations with both space-and time-dependent dispersion, nonlinearity, and external potentials. The Painleve analysis is carried...We investigate the Painleve integrabiiity of nonautonomous nonlinear Schr6dinger (NLS) equations with both space-and time-dependent dispersion, nonlinearity, and external potentials. The Painleve analysis is carried out without using the Kruskal's simplification, which results in more generalized form of inhomogeneous equations. The obtained equations are shown to be reducible to the standard NLS equation by using a point transformation. We also construct the corresponding Lax pair and carry out its Kundu-type reduction to the standard Lax pair. Special cases of equations from choosing limited form of coefficients coincide with the equations from the previous Painleve analyses and/or become unknown new equations.展开更多
The authors prove the global null controllability for the 1-dimensional nonlinear slow diffusion equation by using both a boundary and an internal control. They assume that the internal control is only time dependent....The authors prove the global null controllability for the 1-dimensional nonlinear slow diffusion equation by using both a boundary and an internal control. They assume that the internal control is only time dependent. The proof relies on the return method in combination with some local controllability results for nondegenerate equations and rescaling techniques.展开更多
In this study, we have constructed a new numerical approach for solving the time-dependent linear and nonlinear Fokker-Planck equations. In fact, we have discretized the time variable with Crank-Nicolson method and fo...In this study, we have constructed a new numerical approach for solving the time-dependent linear and nonlinear Fokker-Planck equations. In fact, we have discretized the time variable with Crank-Nicolson method and for the space variable, a numerical method based on Generalized Lagrange Jacobi Gauss-Lobatto(GLJGL) collocation method is applied. It leads to in solving the equation in a series of time steps and at each time step, the problem is reduced to a problem consisting of a system of algebraic equations that greatly simplifies the problem. One can observe that the proposed method is simple and accurate. Indeed, one of its merits is that it is derivative-free and by proposing a formula for derivative matrices, the difficulty aroused in calculation is overcome, along with that it does not need to calculate the General Lagrange basis and matrices; they have Kronecker property. Linear and nonlinear Fokker-Planck equations are given as examples and the results amply demonstrate that the presented method is very valid, effective,reliable and does not require any restrictive assumptions for nonlinear terms.展开更多
文摘For the time-dependent harmonic oscillator and generalized harmonic oscillator with or without external forces in non-commutative space, wave functions, and geometric phases are derived using the Lewis-Riesenfeld invariant. Coherent states are obtedned as the ground state of the forced system. Quantum fluctuations are calculated too. It is seen that geometric phases and quantum fluctuations are greatly affected by the non-commutativity of the space.
基金supported by the Kyung Hee University on sabbatical leave in 2010
文摘We investigate the Painleve integrabiiity of nonautonomous nonlinear Schr6dinger (NLS) equations with both space-and time-dependent dispersion, nonlinearity, and external potentials. The Painleve analysis is carried out without using the Kruskal's simplification, which results in more generalized form of inhomogeneous equations. The obtained equations are shown to be reducible to the standard NLS equation by using a point transformation. We also construct the corresponding Lax pair and carry out its Kundu-type reduction to the standard Lax pair. Special cases of equations from choosing limited form of coefficients coincide with the equations from the previous Painleve analyses and/or become unknown new equations.
基金Project supported by the ITN FIRST of the Seventh Framework Programme of the European Community (No. 238702)the ERC advanced grant 266907 (CPDENL) of the 7th Research Framework Programme (FP7)+1 种基金DGISPI of Spain (Project MTM2011-26119)the Research Group MOMAT(No. 910480) supported by UCM
文摘The authors prove the global null controllability for the 1-dimensional nonlinear slow diffusion equation by using both a boundary and an internal control. They assume that the internal control is only time dependent. The proof relies on the return method in combination with some local controllability results for nondegenerate equations and rescaling techniques.
文摘In this study, we have constructed a new numerical approach for solving the time-dependent linear and nonlinear Fokker-Planck equations. In fact, we have discretized the time variable with Crank-Nicolson method and for the space variable, a numerical method based on Generalized Lagrange Jacobi Gauss-Lobatto(GLJGL) collocation method is applied. It leads to in solving the equation in a series of time steps and at each time step, the problem is reduced to a problem consisting of a system of algebraic equations that greatly simplifies the problem. One can observe that the proposed method is simple and accurate. Indeed, one of its merits is that it is derivative-free and by proposing a formula for derivative matrices, the difficulty aroused in calculation is overcome, along with that it does not need to calculate the General Lagrange basis and matrices; they have Kronecker property. Linear and nonlinear Fokker-Planck equations are given as examples and the results amply demonstrate that the presented method is very valid, effective,reliable and does not require any restrictive assumptions for nonlinear terms.