Transition metal nitrides (TMNs) are of particular interest by virtue of their synergic advantages of superior electrical conductivity, excellent environmental durability and high reaction selectivity, yet it is dif...Transition metal nitrides (TMNs) are of particular interest by virtue of their synergic advantages of superior electrical conductivity, excellent environmental durability and high reaction selectivity, yet it is difficult to achieve flexible design and operation. Herein, mesocrystal nanosheets (MCNSs) of vanadium nitride (VN) are synthesized via a confined-growth route from thermally stable layered vanadium bronze, representing the first two-dimensional (2D) metallic mesocrystal in inorganic compounds. Benefiting from their single-crystalline-like long-range electronic connectivity, VN MCNSs deliver an electrical conductivity of 1.44×10^5 S/m at room temperature, among the highest values observed for 2D nanosheets. Coupled with their unique pseudocapacitance, VN MCNS-based flexible supercapacitors afford a superior volumetric capacitance of 1,937 mF/cm3. Nitride MCNSs should have wide applications in the energy storage and conversion fields because their intrinsic high conductivity is coupled with the reactivity of inorganic lattices.展开更多
文摘Transition metal nitrides (TMNs) are of particular interest by virtue of their synergic advantages of superior electrical conductivity, excellent environmental durability and high reaction selectivity, yet it is difficult to achieve flexible design and operation. Herein, mesocrystal nanosheets (MCNSs) of vanadium nitride (VN) are synthesized via a confined-growth route from thermally stable layered vanadium bronze, representing the first two-dimensional (2D) metallic mesocrystal in inorganic compounds. Benefiting from their single-crystalline-like long-range electronic connectivity, VN MCNSs deliver an electrical conductivity of 1.44×10^5 S/m at room temperature, among the highest values observed for 2D nanosheets. Coupled with their unique pseudocapacitance, VN MCNS-based flexible supercapacitors afford a superior volumetric capacitance of 1,937 mF/cm3. Nitride MCNSs should have wide applications in the energy storage and conversion fields because their intrinsic high conductivity is coupled with the reactivity of inorganic lattices.