This paper reviews the development of current research in bulk glassy alloys by focusing on the trigger point for the synthesis of the first bulk glassy alloys by the conventional mold casting method. This review cove...This paper reviews the development of current research in bulk glassy alloys by focusing on the trigger point for the synthesis of the first bulk glassy alloys by the conventional mold casting method. This review covers the background, discovery, characteristics, and applications of bulk glassy alloys, as well as recent topics regarding them. Applications of bulk glassy alloys have been expanding, particularly for Fe-based bulk glassy alloys, due to their unique properties, high glass-forming ability, and low cost. In the near future, the engineering importance of bulk glassy alloys is expected to increase steadily, and continuous interest in these novel metallic materials for basic science research is anticipated.展开更多
This paper reports on the preparation of Fe82.7-85.7Si2-4.9B9.2-11.2P1.5.2.7C0,8 soft magnetic amorphous alloys with a distinctly high Fe content of 93.5-95.5 wt.% by component design and composition adjustment. All a...This paper reports on the preparation of Fe82.7-85.7Si2-4.9B9.2-11.2P1.5.2.7C0,8 soft magnetic amorphous alloys with a distinctly high Fe content of 93.5-95.5 wt.% by component design and composition adjustment. All alloys can be readily fabricated into completely amorphous ribbon samples with good surface quality by the single copper roller melt-spinning method. These alloys show good bending ductility and excellent magnetic properties after annealing, i.e., low coercivity (He) of 3.3-5.9 A/m, high permeability (μe) of 5000-10000 and high flux saturation density (Bs) of 1.63-1.66 T. The mechanism of the good glass forming ability (GFA)and soft-magnetic properties are explored. The amorphous alloys with the high Fe content comparable to that of the desired high Si alloy can be promising candidates for the potential application in electric devices.展开更多
基金supported by Guangdong Innovative Research Team Program (2009010005)
文摘This paper reviews the development of current research in bulk glassy alloys by focusing on the trigger point for the synthesis of the first bulk glassy alloys by the conventional mold casting method. This review covers the background, discovery, characteristics, and applications of bulk glassy alloys, as well as recent topics regarding them. Applications of bulk glassy alloys have been expanding, particularly for Fe-based bulk glassy alloys, due to their unique properties, high glass-forming ability, and low cost. In the near future, the engineering importance of bulk glassy alloys is expected to increase steadily, and continuous interest in these novel metallic materials for basic science research is anticipated.
基金the National Natural Science Foundation of China(Grant No.51541106)Ningbo International Cooperation Projects(Grant No.2015D10022)+2 种基金Ningbo Major Project for Science and Technology(Grant No.201401B1003003)Ningbo Natural Science Foundations(Grant No.2015A610007)General Research Fund of Hong Kong(Grant No.CityU 102013)
文摘This paper reports on the preparation of Fe82.7-85.7Si2-4.9B9.2-11.2P1.5.2.7C0,8 soft magnetic amorphous alloys with a distinctly high Fe content of 93.5-95.5 wt.% by component design and composition adjustment. All alloys can be readily fabricated into completely amorphous ribbon samples with good surface quality by the single copper roller melt-spinning method. These alloys show good bending ductility and excellent magnetic properties after annealing, i.e., low coercivity (He) of 3.3-5.9 A/m, high permeability (μe) of 5000-10000 and high flux saturation density (Bs) of 1.63-1.66 T. The mechanism of the good glass forming ability (GFA)and soft-magnetic properties are explored. The amorphous alloys with the high Fe content comparable to that of the desired high Si alloy can be promising candidates for the potential application in electric devices.