期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
不同淋溶方式下石英砂柱中铁锰的运移淀积特征 被引量:2
1
作者 阳运秀 张斌 +1 位作者 夏彪 黄丽 《中国科技论文》 CAS 北大核心 2013年第12期1282-1290,共9页
以石英砂为装柱材料,用不同浓度的铁锰单一或混合溶液淋溶石英砂柱40次,研究淋溶液的pH(pH 5,pH 3.5),铁锰物质的量比(1∶1,2∶1,4∶1)和淋溶方式(铁锰同时淋溶或交替淋溶)等因素对石英砂柱中铁锰淀积和运移的影响。结果表明:1)不同淋... 以石英砂为装柱材料,用不同浓度的铁锰单一或混合溶液淋溶石英砂柱40次,研究淋溶液的pH(pH 5,pH 3.5),铁锰物质的量比(1∶1,2∶1,4∶1)和淋溶方式(铁锰同时淋溶或交替淋溶)等因素对石英砂柱中铁锰淀积和运移的影响。结果表明:1)不同淋溶方式的处理间铁锰形态分布存在显著差异。随淋溶次数的增加,铁锰同时淋溶的砂柱内,各形态的铁锰淀积量逐渐增加,而铁锰交替淋溶砂柱内的铁锰含量随淋溶阶段而变化;2)相同淋溶方式,不同铁锰物质的量比处理的砂柱间铁锰淀积量差异显著,淋溶液锰浓度高的处理其游离锰、非晶锰的淀积量较大;3)相同铁锰物质的量比,铁锰同时淋溶处理的游离铁锰和非晶质铁的淀积量高于相应交替淋溶的,而非晶质锰的反之;4)pH 3.5淋溶处理的砂柱中,铁锰淀积量总体高于pH 5的,以下层(25cm)的含量最高,铁锰具有向下运移的规律,但在pH 5淋溶处理的砂柱中该现象不明显;5)石英砂表面淀积的游离和非晶质铁锰随着淋溶的进行总体呈现增加的趋势,前期淀积的游离铁锰对后阶段游离铁锰的形成有促进作用,游离铁与非晶质铁的淀积量呈正相关。 展开更多
关键词 石英砂柱 铁锰氧化物 淋溶 游离 非晶质态 淀积
下载PDF
Relationship Between Iron Oxides and Surface Charge Characteristics in Soils 被引量:2
2
作者 SHAOZONG-CHEN WANGWEI-JUN 《Pedosphere》 SCIE CAS CSCD 1991年第1期29-39,共11页
The relationship between iron oxides and surface charge characteristics in variable charge soils ( latosol and red earth ) was studied in following three ways. ( 1 ) Remove free iron oxides ( Fed ) and amorphous iron ... The relationship between iron oxides and surface charge characteristics in variable charge soils ( latosol and red earth ) was studied in following three ways. ( 1 ) Remove free iron oxides ( Fed ) and amorphous iron oxides ( Feo ) from the soils with sodium dithionite and acid ammonium oxalate solution respectively. ( 2 ) Add 2% glucose ( on the basis of air-dry soil weight ) to soils and incubate under submerged condition to activate iron oxides, and then the mixtures are dehydrated and air-dried to age iron oxides. ( 3 ) Precipitate various crystalline forms of iron oxides onto kaolinite. The results showed that free iron oxides ( Fed ) were the chief carrier of variable positive charges. Of which crystalline iron oxides ( Fed-Feo ) presented mainly as discrete particles in the soils and could only play a role of the carrier of positive charges, and did little influence on negative charges. Whereas the amorphous iron oxides ( Feo ) , which presented mainly as a coating with a large specific surface area, not only had positive charges, but also blocked the negative charge sites in soils. Submerged incubation activated iron oxides in the soils, and increased the amount of amorphous iron oxides and the degree of activation of iron oxide, which resulted in the increase of positive and negative charges of soils. Dehydration and air-dry aged iron oxides in soils and decreased the amount of amorphous iron oxides and the degree of activation of iron oxide, and also led to the decrease of positive and negative charges. Both the submerged incubation and the dehydration and air-dry had no significant influence on net charges. Precipitation of iron oxides onto kaolinite markedly increased positive charges and decreased negative charges. Amorphous iron oxide having a larger surface area contributed more positive charge sites and blocked more negative charge sites in kaolinite than crystalline goethite. 展开更多
关键词 amorphous iron oxide degree of activation of iron oxide free iron oxide surface charge variable charge soil
下载PDF
Effects of minerals in ferric bauxite on sodium carbonate decomposition and volatilization 被引量:1
3
作者 胡文韬 王化军 +1 位作者 刘欣伟 孙传尧 《Journal of Central South University》 SCIE EI CAS CSCD 2015年第7期2503-2507,共5页
Direct reduction is an emerging technology for ferric bauxite utilization. However, because of sodium volatilization, its sodium carbonate consumption is considerably higher than that in ordinary bauxite processing te... Direct reduction is an emerging technology for ferric bauxite utilization. However, because of sodium volatilization, its sodium carbonate consumption is considerably higher than that in ordinary bauxite processing technology. TG-DSC and XRD were applied to detecting phase transformation and mass loss in direct reduction to reveal the mechanism on sodium volatilization. The results show that the most significant influence factor of ferric bauxite on sodium volatilization in direct reduction system is its iron content. Sodium volatilization is probably ascribed to the instability of amorphous substances structure. Amorphous substances are the intermediate-products of the reaction, and the volatilization rate of sodium increases with its generating rate. These amorphous substances are volatile, thus, more sodium is volatilized with its generation. A small amount of amorphous substances are generated in the reaction between Na2CO3 and Al2O3; thus, only 3.15% of sodium is volatilized. Similarly, the volatilization rate is 1.87% in the reaction between Na2CO3 and SiO2. However, the volatilization rate reaches 7.64% in the reaction between Na2CO3 and Fe2O3 because of the generation of a large amount of amorphous substances. 展开更多
关键词 Na2CO3 decomposition Na2CO3 volatilization ferric bauxite direct reduction
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部