期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
基于语义对齐和层次优化的非机动车车牌识别定位方法
1
作者 谭若琦 董明刚 +1 位作者 赵唯肖 武天昊 《计算机工程》 CAS CSCD 北大核心 2024年第11期142-151,共10页
对非机动车违规行为依法追究责任是提高城市交通安全的有效手段。由于非机动车车牌具有尺寸小、分布密集、易遮挡等特点,导致应用传统的深度学习方法会出现特征信息大量丢失的现象。为此,提出一种基于语义对齐和层次优化的非机动车车牌... 对非机动车违规行为依法追究责任是提高城市交通安全的有效手段。由于非机动车车牌具有尺寸小、分布密集、易遮挡等特点,导致应用传统的深度学习方法会出现特征信息大量丢失的现象。为此,提出一种基于语义对齐和层次优化的非机动车车牌识别定位方法。首先设计底层信息融合的语义对齐模块,在上采样过程中利用底层目标信息引导高层语义向下融合,以解决高底层语义冲突带来的小目标特征丢失问题;然后构建CSP结构的层次优化模块替代深层ELAN模块,使用堆叠少量卷积核模块提取目标信息以减少网络层数,避免特征信息在深层丢失;最后,为减少训练过程中的匹配误差,使用K-Means++算法聚类得到适合非机动车车牌的初始锚框,提高小目标识别定位准确率。实验结果表明,所提方法在自制非机动车车牌数据集上的识别定位准确率为90.95%,与YOLOv7、YOLOv8等代表性方法相比至少提升3.58%,为非机动车车牌识别定位提供了一种有效的方法。 展开更多
关键词 小目标检测 非机动车车牌 语义对齐 层次优化 K-Means++算法
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部