期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
基于惠斯通电桥的非极值电阻自动测量方法 被引量:5
1
作者 金宇 黄薪薪 +2 位作者 冯卓宏 陈志高 郑卫峰 《实验室科学》 2020年第5期29-31,36,共4页
惠斯通电桥是一种准确测量电阻阻值的电路,被广泛应用于科学测量和自动控制领域。为简化测量过程,提高测量精度,利用电压传感器设计了新型测量电路,该电路以滑动变阻器为调节电阻R 4,通过传感器实时测量两参考点电势差,结合曲线拟合,实... 惠斯通电桥是一种准确测量电阻阻值的电路,被广泛应用于科学测量和自动控制领域。为简化测量过程,提高测量精度,利用电压传感器设计了新型测量电路,该电路以滑动变阻器为调节电阻R 4,通过传感器实时测量两参考点电势差,结合曲线拟合,实现非极值法、动态自动测量待测电阻阻值。以此为基础,对比率臂电阻、比率臂电阻比、路端电压等各个影响因素进行了探究,得到了较好的实验结果。 展开更多
关键词 电阻测量 惠斯通电桥 非极值法 动态自动测量 电压传感器
下载PDF
Error estimates of numerical methods for the nonlinear Dirac equation in the nonrelativistic limit regime 被引量:1
2
作者 BAO WeiZhu CAI YongYong +1 位作者 JIA XiaoWei YIN Jia 《Science China Mathematics》 SCIE CSCD 2016年第8期1461-1494,共34页
We present several numerical methods and establish their error estimates for the discretization of the nonlinear Dirac equation (NLDE) in the nonrelativistic limit regime, involving a small dimensionless parameter 0... We present several numerical methods and establish their error estimates for the discretization of the nonlinear Dirac equation (NLDE) in the nonrelativistic limit regime, involving a small dimensionless parameter 0 〈 ε〈〈1 which is inversely proportional to the speed of light. In this limit regime, the solution is highly oscillatory in time, i.e., there are propagating waves with wavelength O( ε^2) and O(1) in time and space, respectively. We begin with the conservative Crank-Nicolson finite difference (CNFD) method and establish rigorously its error estimate which depends explicitly on the mesh size h and time step τ- as well as the small parameter 0 〈 ε≤1 Based on the error bound, in order to obtain 'correct' numerical solutions in the nonrelativistic limit regime, i.e., 0 〈 ε≤1 , the CNFD method requests the ε-scalability: τ- = O(ε3) and h = O(√ε). Then we propose and analyze two numerical methods for the discretization of NLDE by using the Fourier spectral discretization for spatial derivatives combined with the exponential wave integrator and time- splitting technique for temporal derivatives, respectively. Rigorous error bounds for the two numerical methods show that their ε-scalability is improved to τ = O(ε2) and h = O(1) when 0 〈 ε 〈〈 1. Extensive numerical results are reported to confirm our error estimates. 展开更多
关键词 nonlinear Dirac equation nonrelativistic limit regime Crank-Nicolson finite difference method exponential wave integrator time splitting spectral method ^-scalability
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部