期刊文献+
共找到26篇文章
< 1 2 >
每页显示 20 50 100
使用GIoU改进非极大值抑制的目标检测算法 被引量:31
1
作者 侯志强 刘晓义 +3 位作者 余旺盛 蒲磊 马素刚 范九伦 《电子学报》 EI CAS CSCD 北大核心 2021年第4期696-705,共10页
针对单阈值-非极大值抑制算法中出现的目标漏检和重复检测问题,本文提出了一种使用全局交并比指标GIoU(Generalized Intersection over Union)衡量目标相似度的双阈值非极大值抑制算法GDT-NMS(Generalized Dual Threshold NMS,GDT-NMS)... 针对单阈值-非极大值抑制算法中出现的目标漏检和重复检测问题,本文提出了一种使用全局交并比指标GIoU(Generalized Intersection over Union)衡量目标相似度的双阈值非极大值抑制算法GDT-NMS(Generalized Dual Threshold NMS,GDT-NMS).使用双阈值改进NMS算法和soft-NMS算法,抑制多余的检测框;在此基础上,使用GIoU替换传统的IoU计算目标间的相似度,使目标的定位更加准确;进一步,使用非线性函数赋予检测框不同比例的权值惩罚,使检测框的得分随距离呈非线性变化,目标区分度更高.改进算法在PASCAL VOC和MSCOCO上的检测精度分别为74.8%和25.9%,与使用NMS算法作为后处理的Faster R-CNN算法相比,性能分别提升了1.6%和1.5%.同时本文算法具有较快的检测速度. 展开更多
关键词 双阈值 极大抑制算法 重复检测 后处理
下载PDF
基于F1值的非极大值抑制阈值自动选取方法 被引量:12
2
作者 王照国 张红云 苗夺谦 《智能系统学报》 CSCD 北大核心 2020年第5期1006-1012,共7页
传统的NMS算法的过滤阈值是人为设定的,由于阈值的选取不当可能会造成漏检和误检。在应用NMS算法时,所有图像的最佳阈值不是完全相同的,根据图像自身信息的不同而发生变化。针对上述问题,提出基于F1值的非极大值抑制阈值自动选取方法,... 传统的NMS算法的过滤阈值是人为设定的,由于阈值的选取不当可能会造成漏检和误检。在应用NMS算法时,所有图像的最佳阈值不是完全相同的,根据图像自身信息的不同而发生变化。针对上述问题,提出基于F1值的非极大值抑制阈值自动选取方法,综合考虑检测算法的准确率与召回率,选取使F1值最高的最佳过滤阈值,构建映射关系。测试阶段,利用映射关系和图像信息自动选取对应的过滤阈值。实验结果表明,本文提出的改进版本NMS算法将检测精度mAP值提高了1.1%。与现有的先进算法做对比,证明了本文算法的有效性。 展开更多
关键词 计算机视觉 目标检测 极大抑制算法 卷积神经网络 深度学习 检测框 F1值 自适应算法
下载PDF
改进YOLOv5s算法的无人机小目标检测方法
3
作者 杨兴志 《科学技术创新》 2024年第11期80-83,共4页
针对无人机视角小目标检测出现目标漏检、误检和精度不高的问题,研究适用于无人机视角下的YOLOv5目标检测算法。首先,为了使网络学习到更多的特征,在主干网络中引入轻量化的MobileNetV3_Small算法,增强模型特征提取能力的同时降低了参... 针对无人机视角小目标检测出现目标漏检、误检和精度不高的问题,研究适用于无人机视角下的YOLOv5目标检测算法。首先,为了使网络学习到更多的特征,在主干网络中引入轻量化的MobileNetV3_Small算法,增强模型特征提取能力的同时降低了参数量和运算量,方便部署到无人机设备。然后,为了加强模型在目标聚集的情形下以降低漏检并提升检测精度,替换原始非极大值抑制算法为Soft-NMS。实验结果表明,改进的模型在VisDrone2019数据集上检测精度达到34.7%,相比于YOLOv5s算法精度提高5.4个百分点,同时降低了模型的参数和浮点运算量,便于部署到无人机设备,使得改进后的算法可以更好的应用于无人机视角下的图像目标检测任务中。 展开更多
关键词 无人机小目标检测 YOLOv5s MobileNetV3 极大抑制算法
下载PDF
基于Edge Boxes和深度学习的非限制条件下人脸检测 被引量:2
4
作者 刘英剑 张起贵 《现代电子技术》 北大核心 2018年第13期29-33,共5页
针对光线、旋转、遮挡、平移等因素对人脸检测结果产生的干扰,提出一种基于Edge Boxes和深度学习相结合的人脸检测算法。首先采用Edge Boxes算法提取出可能存在人脸的边界框,提取边界框中的图像并调整至合适的大小,作为卷积神经网络的输... 针对光线、旋转、遮挡、平移等因素对人脸检测结果产生的干扰,提出一种基于Edge Boxes和深度学习相结合的人脸检测算法。首先采用Edge Boxes算法提取出可能存在人脸的边界框,提取边界框中的图像并调整至合适的大小,作为卷积神经网络的输入,然后利用卷积神经网络对提取出的图像进行特征提取和分类,最后利用非极大抑制算法排除多余人脸检测框,得到人脸的准确位置。该算法应用于LFW和Yale B人脸数据库的检测率分别达到98.7%和98.5%,识别单张人脸的时间均小于0.5 s。实验结果表明,该算法在检测率和检测速率方面较传统算法都有了很大的提高,对于遮挡、光照、旋转等干扰具有更强的鲁棒性。 展开更多
关键词 人脸检测 特征提取 深度学习 EDGE BOXES 卷积神经网络 非极大抑制算法
下载PDF
基于SVM-LeNet模型融合的行人检测算法 被引量:12
5
作者 邹冲 蔡敦波 +2 位作者 赵娜 刘莹 赵彤洲 《计算机工程》 CAS CSCD 北大核心 2017年第5期169-173,共5页
在方向梯度直方图(HOG)联合支持向量机(SVM)算法(HOG-SVM)和Le Net网络模型基础上,提出了HOG与卷积神经网络(CNN)融合的行人检测算法(SVM-Le Net)。采用多尺度滑动窗口提取HOG特征并送入SVM分类器,根据后验概率判断候选区,随后运用CNN... 在方向梯度直方图(HOG)联合支持向量机(SVM)算法(HOG-SVM)和Le Net网络模型基础上,提出了HOG与卷积神经网络(CNN)融合的行人检测算法(SVM-Le Net)。采用多尺度滑动窗口提取HOG特征并送入SVM分类器,根据后验概率判断候选区,随后运用CNN算法剔除误检窗口。为解决单个目标被多个候选区域框定的问题,使用非极大值抑制算法(NMS)进行多矩形融合,保留检测区域中后验概率最大的窗口抑制与其重叠的检测窗口。分类过程中,以候选区域在SVM和Le Net中后验概率为依据判断行人区域。实验结果表明,与HOGSVM和Le Net行人检测算法相比,该算法在准确率和召回率上有明显优势。 展开更多
关键词 行人检测 权重模板 支持向量机 极大抑制算法 卷积神经网络
下载PDF
改进的非极大值抑制算法的目标检测 被引量:57
6
作者 赵文清 严海 邵绪强 《中国图象图形学报》 CSCD 北大核心 2018年第11期1676-1685,共10页
目的作为目标检测的后置处理算法,非极大值抑制(NMS)算法被用于移除多余的检测框。然而,NMS算法在每轮迭代中抑制所有与预选取检测框Intersection-over-Union(Io U)值大于给定阈值的检测框,容易造成目标的漏检和误检。此外,阈值的选取... 目的作为目标检测的后置处理算法,非极大值抑制(NMS)算法被用于移除多余的检测框。然而,NMS算法在每轮迭代中抑制所有与预选取检测框Intersection-over-Union(Io U)值大于给定阈值的检测框,容易造成目标的漏检和误检。此外,阈值的选取对整个算法的效果有着至关重要的影响。针对这个问题,本文提出了改进的NMS算法,分别为分段比例惩罚因子NMS算法和连续比例惩罚因子NMS算法。在连续比例惩罚因子NMS算法中,阈值对算法的运行效果仅有轻微的影响。方法改进的NMS算法首先根据检测框与预选取检测框的Io U值大小计算出检测框对应的比例惩罚因子;然后将检测框置信度分数乘以比例惩罚因子,通过比例惩罚因子逐轮降低检测框的分数;最后经过多轮迭代后移除分数低于阈值的检测框。结果基于分段比例惩罚因子NMS算法和连续比例惩罚因子NMS算法的Faster RCNN目标检测模型在PASCAL VOC 2007数据集下,Faster RCNN的检测平均精度均值(m AP)相较于传统的NMS算法分别提高了1. 5%和1. 6%。其中,以火车类为例,当准确率和召回率均为80%时,火车类检测的漏检率和误检率分别降低了1. 8%和1. 2%。与传统的NMS算法相比,本文所提出改进的NMS算法可以有效地保留目标检测框和移除目标的假正例检测框,从而降低NMS算法的漏检率和误检率。结论在时间复杂度相同和运行效率一致的情况下,与传统的NMS算法相比,本文所提出的改进NMS算法m AP值得到了显著的提升,同时本文算法为其他目标检测模型提供了一个通用的解决方法。 展开更多
关键词 目标检测 极大抑制算法 检测框 比例因子 假正例
原文传递
基于改进Faster R-CNN与迁移学习的农田杂草识别算法 被引量:6
7
作者 尚文卿 齐红波 《中国农机化学报》 北大核心 2022年第10期176-182,共7页
杂草是导致农作物减产不保量的重要因素,针对田间自然环境下杂草识别精度低和识别范围局限的问题,提出一种基于改进Faster R-CNN与迁移学习的农田杂草识别算法。首先,采集多场景下不同时段不同角度的杂草图片,通过旋转、裁剪和调节色彩... 杂草是导致农作物减产不保量的重要因素,针对田间自然环境下杂草识别精度低和识别范围局限的问题,提出一种基于改进Faster R-CNN与迁移学习的农田杂草识别算法。首先,采集多场景下不同时段不同角度的杂草图片,通过旋转、裁剪和调节色彩等方式扩充数据集;然后,在原始Faster R-CNN网络的基础上利用改进的双阈值非极大抑制算法(Non-Maximum Suppression,NMS)查找置信度较高的边界框;最后,将AlexNet、GoogleNet、VGG16和ResNet50等作为模型的区域建议网络,并将其最优模型参数迁移至农田杂草识别任务中。通过在多样本数据集和少量物种样本数据集上进行测试验证,试验结果表明,算法可以实现96.58%的精确率、94.82%的召回率和95.06%的F_(1)-score,相比当前主流算法在保持识别精度较高的基础上,具有更广的识别范围。 展开更多
关键词 杂草识别 Faster R-CNN 迁移学习 双阈值非极大抑制算法
下载PDF
基于检测-分割的图像拼接篡改盲取证算法 被引量:1
8
作者 杨超 周大可 杨欣 《电子设计工程》 2020年第13期169-174,共6页
为了解决现有图像拼接篡改盲取证算法中所存在的篡改区域检测偏差大,篡改对象分割精度低,算法框架单一等问题,提出了一种基于检测-分割的图像拼接篡改盲取证算法。该算法基于Mask R-CNN的网络结构,新增一条自下而上的路径来改进特征金字... 为了解决现有图像拼接篡改盲取证算法中所存在的篡改区域检测偏差大,篡改对象分割精度低,算法框架单一等问题,提出了一种基于检测-分割的图像拼接篡改盲取证算法。该算法基于Mask R-CNN的网络结构,新增一条自下而上的路径来改进特征金字塔(FPN)的网络结构,以实现多级特征的融合。同时采用新的非极大值抑制算法Soft-NMS,在不增加计算复杂度的前提下提升区域提取网络(RPN)的输出结果。此外,在该算法中定义合适的损失函数,以满足检测-分割任务融合的实验需要。实验结果表明,该算法在标准测试集中AP值达到了0.794和0.769,F1_measure值达到了0.693和0.745,MCC值达到了0.649和0.685,检测与分割性能均达到最优。 展开更多
关键词 图像篡改盲取证 Mask R-CNN 特征金字塔 极大抑制算法
下载PDF
改进SSD算法的多目标检测 被引量:9
9
作者 马原东 罗子江 +4 位作者 倪照风 徐斌 吴凤娇 孙收余 杨秀璋 《计算机工程与应用》 CSCD 北大核心 2020年第23期23-30,共8页
目标检测作为计算机视觉的核心,在人脸识别、人脸跟踪、大规模场景识别等方面具有广泛应用,其中Onestage领域的SSD算法检测速度和检测性能较为突出,但在环境较为复杂的多目标检测情况下仍会出现误检和漏检。针对这一问题,提出一种改进SS... 目标检测作为计算机视觉的核心,在人脸识别、人脸跟踪、大规模场景识别等方面具有广泛应用,其中Onestage领域的SSD算法检测速度和检测性能较为突出,但在环境较为复杂的多目标检测情况下仍会出现误检和漏检。针对这一问题,提出一种改进SSD算法的多目标检测方法,通过优化SSD内部网络和提高样本适用性的方式改善检测性能;其中,采用修改网络输出和添加抗旋转层ARConv来统一网络结构,降低模型训练时间,减少漏检;并提出P-NMS算法和限制函数优化训练样本,减少误检;在测试阶段,提出单张图片批量测试方法,有效提高模型召回率。实验结果表明,改进后算法具有更强的鲁棒性,并且能有效降低误检、漏检率提升网络性能。 展开更多
关键词 多目标检测 SSD算法优化 抗旋转卷积层(ARConv) 概率极大抑制(P-NMS)算法 图片批量测试
下载PDF
结合卷积注意力机制改进YOLOv5s的垃圾检测
10
作者 王娟娟 黄炜 马生菊 《电子器件》 CAS 2024年第5期1434-1440,共7页
针对传统生活垃圾检测模型检测精度低,假阳性和假阴性高的问题,提出一种结合卷积注意力机制改进YOLOv5s的垃圾检测算法。首先,利用改进的双阈值非极大抑制算法(NMS)查找原始YOLOv5s的锚框中置信度较高的检测框;然后,利用卷积注意力机制(... 针对传统生活垃圾检测模型检测精度低,假阳性和假阴性高的问题,提出一种结合卷积注意力机制改进YOLOv5s的垃圾检测算法。首先,利用改进的双阈值非极大抑制算法(NMS)查找原始YOLOv5s的锚框中置信度较高的检测框;然后,利用卷积注意力机制(CBAM)改进CSPDarknet53特征提取网络,强化映射到深度特征空间的特征的表达能力;最后,在自制垃圾检测数据集上对改进的网络进行训练,实现垃圾的快速定位与识别。通过在真实场景中进行测试,结果表明所提模型可以实现不同形态的多种垃圾定位与识别,平均识别精度达到95.61%,召回率达到94.85%,F1值可以达到95.70%,同时可以实现单幅图像6.01 ms的检测时间开销,满足实际应用需求,有助于促进垃圾智能化检测的效率。 展开更多
关键词 垃圾检测 YOLOv5s 卷积注意力机制 双阈值非极大抑制算法 CSPDarknet53
下载PDF
基于改进版Faster-RCNN的复杂背景下桃树黄叶病识别研究
11
作者 张平川 胡彦军 +3 位作者 张烨 张彩虹 陈昭 陈旭 《中国农机化学报》 北大核心 2024年第3期219-225,251,共8页
由于桃树黄叶病(以下简称PTYLD)初期症状不明显,现有的基于深度学习的桃树病害识别技术,存在识别准确率不高、识别品种单一的问题,提出一种基于Faster-RCNN的PTYLD识别模型。为提高模型对PTYLD识别准确率和识别多样性,提出使用RS-Loss... 由于桃树黄叶病(以下简称PTYLD)初期症状不明显,现有的基于深度学习的桃树病害识别技术,存在识别准确率不高、识别品种单一的问题,提出一种基于Faster-RCNN的PTYLD识别模型。为提高模型对PTYLD识别准确率和识别多样性,提出使用RS-Loss函数代替RPN中的交叉熵函数、使用Soft-NMS算法代替原来的NMS算法,来改进Faster-RCNN。通过试验对比初始版和改进版Faster-RCNN对PTYLD的识别效果。试验结果显示,改进后的Faster-RCNN对黄叶病识别的各类别平均准确率mAP达90.56%、召回率达94.16%、准确率达92.53%,能识别常见的五种PTYLD。 展开更多
关键词 桃树黄叶病 Faster-RCNN 复杂背景 软性极大抑制算法
下载PDF
基于改进的Faster RCNN的仪表自动识别方法
12
作者 王欣然 张斌 +1 位作者 湛敏 赵成龙 《机电工程》 CAS 北大核心 2024年第3期532-539,共8页
在环境复杂的工业场景中,仪表盘存在类别多、相似性高等问题,导致检测的识别效果较差、准确率不高。针对这一问题,提出了一种基于改进的更快速的区域卷积神经网络(Faster RCNN)的仪表自动识别方法。首先,采用残差网络(Resnet)101代替视... 在环境复杂的工业场景中,仪表盘存在类别多、相似性高等问题,导致检测的识别效果较差、准确率不高。针对这一问题,提出了一种基于改进的更快速的区域卷积神经网络(Faster RCNN)的仪表自动识别方法。首先,采用残差网络(Resnet)101代替视觉几何群网络(VGG)16,进行了网络结构简化;然后,引入了特征金字塔网络(FPN),并将其改进为递归特征金字塔网络后进行了迭代融合,输出了特征图;接着,引入了注意力机制模块,根据特征的重要程度,完成了对输出通道权值的重新分配,增强了Faster RCNN对目标的运算能力;提出了改进非极大值抑制算法(Softer-NMS),通过降低置信度来确定准确的目标候选框;最后,采用Mosaic数据增强技术对可视对象类(VOC)2007数据集进行了扩充,对改进后的Faster RCNN模型进行了仪表自动识别的实验。研究结果表明:在相同工业环境下,与传统的Faster RCNN算法模型相比,改进后的Faster RCNN模型准确率为93.5%,较原模型提高了3.8%,mAP值为92.6%,较原模型提高了3.7%,可见该方法在实际生产中具有较强的鲁棒性与泛化能力,可满足工业上对智能检测的要求。 展开更多
关键词 仪表识别 更快速的区域卷积神经网络 递归特征金字塔网络 注意力机制 极大抑制算法 Mosaic数据增强技术
下载PDF
自然环境下基于增强YOLOv3的百香果目标检测 被引量:1
13
作者 张展榜 罗志聪 +2 位作者 周志斌 李鹏博 孙奇燕 《安徽农业科学》 CAS 2022年第6期186-192,197,共8页
为解决当前流行的目标检测模型对自然环境下百香果由于目标密集互相遮挡所致的检测效率低等问题,以YOLOv3网络为基础,提出了一种基于增强的YOLOv3百香果目标检测算法。首先,针对百香果目标尺寸的特点,利用以交并比为距离度量的改进K-mea... 为解决当前流行的目标检测模型对自然环境下百香果由于目标密集互相遮挡所致的检测效率低等问题,以YOLOv3网络为基础,提出了一种基于增强的YOLOv3百香果目标检测算法。首先,针对百香果目标尺寸的特点,利用以交并比为距离度量的改进K-means++算法,重新获取与目标果实相匹配的锚选框,提高对目标的框选精度以及模型的收敛速度;其次,在输出网络中将用来筛选目标预测框的Soft-NMS算法通过线性函数的形式对其高斯函数的抑制参数进行改进,以提高模型在不同密集场景下的适应性和检测能力;最后,利用增强的YOLOv3模型在经过预处理后的百香果数据集上进行多次试验对比,结果表明增强后的YOLOv3目标检测算法平均精度均值(mAP)达到94.62%,F_(1)值达到94.34%,较原YOLOv3算法分别提升了4.58和3.68百分点,平均检测速度为25.45帧/s,基本满足了自然环境下百香果目标检测的精准性和实时性要求。 展开更多
关键词 百香果 自然场景 密集目标检测 增强YOLOv3 非极大抑制算法
下载PDF
融合注意力机制的输电部件及缺陷检测模型 被引量:1
14
作者 高伟 董云云 +1 位作者 刘军 张兴忠 《计算机工程与设计》 北大核心 2023年第3期929-936,共8页
针对输电线路的多目标识别和缺陷检测中的错检和漏检等问题,提出SE-Faster RCNN模型。在Faster RCNN模型的基础上,将SENet模块嵌入到ResNet模型中,提取关键特征;优化候选框的生成方案;提出基于面积的非极大值抑制算法。通过微调U-Net模... 针对输电线路的多目标识别和缺陷检测中的错检和漏检等问题,提出SE-Faster RCNN模型。在Faster RCNN模型的基础上,将SENet模块嵌入到ResNet模型中,提取关键特征;优化候选框的生成方案;提出基于面积的非极大值抑制算法。通过微调U-Net模型的数据增广方法,构建样本量为23327的数据集,达到91.37%的检测mAP。实验结果表明,提出模型满足输电线路多目标识别和故障检测的鲁棒性和准确性要求。 展开更多
关键词 SENet模块 Faster RCNN模型 基于面积的极大抑制(Aera-NMS)算法 无人机巡检 数据增广 SE-Faster RCNN模型 区域生成网络
下载PDF
基于深度学习的甲骨文偏旁与合体字的识别研究 被引量:5
15
作者 林小渝 陈善雄 +2 位作者 高未泽 莫伯峰 焦清局 《南京师大学报(自然科学版)》 CAS CSCD 北大核心 2021年第2期104-116,共13页
由于甲骨文字形结构多样,异体字较多,其识别一直是甲骨文领域研究的重要问题.本文首次提出以甲骨文偏旁为识别的基本构件,建立单偏旁和合体结构的甲骨文字符识别方法,提升甲骨文识别的精度.方法一:根据甲骨文偏旁字形特点,对甲骨文拓片... 由于甲骨文字形结构多样,异体字较多,其识别一直是甲骨文领域研究的重要问题.本文首次提出以甲骨文偏旁为识别的基本构件,建立单偏旁和合体结构的甲骨文字符识别方法,提升甲骨文识别的精度.方法一:根据甲骨文偏旁字形特点,对甲骨文拓片上的合体字进行甲骨文单偏旁最大极值稳定区域的选取,然后,通过改进的BN-LeNet模型识别甲骨文各个偏旁;方法二:针对甲骨文合体字拓片稀缺的问题,本文提出一种直接对甲骨文合体字进行整体识别的OraNet模型,该模型采用迁移学习的训练策略,对在脱机手写汉字HCL2000数据集预训练的卷积神经网络模型进行参数和结构上的微调,实现迁移得到低层表示和甲骨文合体字集上高层表示的特征融合,以此来提取甲骨文合体字的高级特征.实验结果表明,BN-LeNet网络对甲骨文单偏旁识别率为96.24%,微调的OraNet模型对甲骨文合体字识别率为98.58%,从而表明从甲骨文单偏旁的角度进行甲骨文字形识别,可以获得较高的识别精度.同时本文将甲骨文视为偏旁组合而非整字识别,这使得算法能够识别从未见过的甲骨文新字,即零样本学习,对甲骨文研究有着重要的应用意义. 展开更多
关键词 甲骨文识别 甲骨文偏旁 迁移学习 偏旁分析 极大抑制算法
下载PDF
基于改进YOLOv4的安全帽佩戴检测方法 被引量:4
16
作者 石家玮 杨莉琼 +2 位作者 方艳红 杜义祥 李明骏 《计算机工程与设计》 北大核心 2023年第2期518-525,共8页
针对建筑施工场地场景下远距离小目标安全帽佩戴检测问题,提出的一种改进YOLOv4的安全帽检测方法。将BN层和卷积层合并减少修改后的网络前向推理计算量,利用K-means聚类算法改进先验框维度,采用柔性NMS算法进行置信度权重修改解决标签... 针对建筑施工场地场景下远距离小目标安全帽佩戴检测问题,提出的一种改进YOLOv4的安全帽检测方法。将BN层和卷积层合并减少修改后的网络前向推理计算量,利用K-means聚类算法改进先验框维度,采用柔性NMS算法进行置信度权重修改解决标签重写问题,应用多尺度特征融合提升模型识别准确率。实验结果表明,该方法在安全帽数据集的检测任务中mAP提升2.91%;对低于32*32尺寸目标AP值相较于原算法提升6.02%,能够有效提升安全帽佩戴检测范围和准确率。 展开更多
关键词 安全帽佩戴检测 多尺度特征融合 卷积神经网络 YOLOv4算法 K均值聚类算法 极大抑制算法 目标检测
下载PDF
基于深度学习的大型陨石坑识别方法研究 被引量:8
17
作者 郑磊 胡维多 刘畅 《北京航空航天大学学报》 EI CAS CSCD 北大核心 2020年第5期994-1004,共11页
陨石坑是天体表面最为显著的地形特征,传统陨石坑识别方法主要是对小型陨石坑正负样本的二分类问题研究,且效率和精度均不高。以星体宏观视角下的大型陨石坑作为研究对象,结合图像处理和神经网络等方面的知识,创建了来自不同数据源的陨... 陨石坑是天体表面最为显著的地形特征,传统陨石坑识别方法主要是对小型陨石坑正负样本的二分类问题研究,且效率和精度均不高。以星体宏观视角下的大型陨石坑作为研究对象,结合图像处理和神经网络等方面的知识,创建了来自不同数据源的陨石坑样本数据库,研究了数据源对网络模型泛化能力的影响,提出了一种效率更高的陨石坑多分类识别方法。在非极大值抑制(NMS)算法基础上,提出了一种精度更高的陨石坑检测算法。经过参数优化和实验验证,构建的基于深度学习的多尺度多分类陨石坑自动识别网络框架取得了较高的准确率,在同源验证集上识别率可达0.985,在异源验证集上识别率可达0.863,并且有效改善了目标检测时检测框冗余及误检测的问题。 展开更多
关键词 深度学习 卷积神经网络 陨石坑识别 极大抑制(NMS)算法 目标检测
下载PDF
基于主成分分析网络的车牌检测方法 被引量:4
18
作者 钟菲 杨斌 《计算机科学》 CSCD 北大核心 2018年第3期268-273,共6页
车牌识别是智能交通系统的核心技术,车牌检测是车牌识别技术中至关重要的一步。传统的车牌检测方法多利用浅层的人工特征,在复杂场景下的车牌检测率不高。基于主成分分析网络的车牌检测算法,能够无监督地逐级提取车牌深层特征,可有效提... 车牌识别是智能交通系统的核心技术,车牌检测是车牌识别技术中至关重要的一步。传统的车牌检测方法多利用浅层的人工特征,在复杂场景下的车牌检测率不高。基于主成分分析网络的车牌检测算法,能够无监督地逐级提取车牌深层特征,可有效提高算法的鲁棒性。算法首先采用Sobel算子边缘检测和边缘对称性分析获取车牌候选区域;然后将候选区域输入到主成分分析网络中进行车牌深度特征提取,并利用支持向量机实现对车牌区域的判别;最后采用非极大值抑制算法标记最佳车牌检测区域。利用收集的复杂场景下的车辆图像对所提方法的参数进行分析,并将其与传统方法进行比较。实验结果表明,所提算法的鲁棒性高,性能优于传统的车牌检测方法。 展开更多
关键词 车牌检测 主成分分析网络 特征提取 极大抑制算法
下载PDF
基于Mediapipe的幻影成像装置自然手势交互系统设计 被引量:4
19
作者 孟杰 杨鹏程 +1 位作者 杨朝 李小成 《国外电子测量技术》 北大核心 2023年第3期116-122,共7页
针对博物馆中幻影成像虚拟展示装置的交互需求,设计了一种自然手势的计算机视觉交互系统。利用单目相机对自然手势进行动作采集,针对不同身高人群手部活动范围,计算了单目相机最优捕获位置,实现了140~190 cm人群高度的手势识别。采用Med... 针对博物馆中幻影成像虚拟展示装置的交互需求,设计了一种自然手势的计算机视觉交互系统。利用单目相机对自然手势进行动作采集,针对不同身高人群手部活动范围,计算了单目相机最优捕获位置,实现了140~190 cm人群高度的手势识别。采用Mediapipe机器学习框架对捕获的手势图像实时遍历,获得单帧手掌的标定位置。结合21个特征关节点的手掌模型,使用非极大值抑制算法对自遮挡的手掌进行识别,根据欧氏空间距离判别阈值和单个手指曲率对指间动作做出分类,定义幻影成像常用5种交互动作,通过坐标关系建立了指尖和模型特征点之间的实时映射。实验结果表明,所设计的交互系统,系统识别准确率达到98%,满足幻影成像系统中手势控制虚拟模型的要求。 展开更多
关键词 幻影成像 人机交互 手势识别 Mediapipe 极大抑制算法
下载PDF
基于卷积神经网络的布料疵点检测方法 被引量:2
20
作者 马原东 倪照风 +3 位作者 徐斌 崔潇 杨秀璋 罗子江 《科学技术与工程》 北大核心 2020年第25期10327-10333,共7页
针对传统布料疵点检测准确率低、识别较慢且计算量大问题,提出基于卷积神经网络的布料疵点检测方法,实现增强布料疵点检测鲁棒性、高效性的设计目标。为保证训练结果准确,首先采集数量以千万级为单位的布料图像并进行图像预处理,标记无... 针对传统布料疵点检测准确率低、识别较慢且计算量大问题,提出基于卷积神经网络的布料疵点检测方法,实现增强布料疵点检测鲁棒性、高效性的设计目标。为保证训练结果准确,首先采集数量以千万级为单位的布料图像并进行图像预处理,标记无疵点布料和疵点布料;然后将图像送入设计的卷积神经网络进行训练和测试,获取疵点检测框;紧接着采用改进的非极大值抑制分类算法对检测框进行多框合并,减少误检,进一步提高模型检测效果;最后利用设计的特征图分割算法使网络模型脱离图形处理器显存限制,适用于各种性能计算机。实验结果表明该方法可在实现布料检测高速度、高准确率的同时增强检测方法的鲁棒性。实际检测速度为3 f/s,准确率可达99.6%,超过现有疵点检测算法,表明该检测方法可应用于对布料要求更高的生产企业。 展开更多
关键词 布料疵点检测 卷积神经网络 改进极大抑制算法 分割算法
下载PDF
上一页 1 2 下一页 到第
使用帮助 返回顶部