In this study, the antioxidative (3-methyl-2-butenyl caffeate), BC efficiency of CAPE (caffeic acid phenethyl ester) and four of its derivatives (MBC (benzoic caffeate), P3HC (phenethyl-3-hydroxy-cinnamate) a...In this study, the antioxidative (3-methyl-2-butenyl caffeate), BC efficiency of CAPE (caffeic acid phenethyl ester) and four of its derivatives (MBC (benzoic caffeate), P3HC (phenethyl-3-hydroxy-cinnamate) and P4HC (phenethyl-4-hydroxy-cinnamate)) are compared in vacuum and in seven solvents. It turned out that the AA (antioxidant activity) in increasing order was P3HC 〈 P4HC 〈 CAPE 〈 MBC. Effects of solvents on the structure and the antioxidant activity of P3HC, P4HC, BC, MBC and CAPE, were studied at 133LYP/6-31G (d, p) then B3LYP/6-3 I+G (d, p) level of theory using the conductor polarized continuum model methods. Thermodynamically, the authors showed that solvent effects on bond dissociation enthalpy are very weak (within 25 kJ/mol), but sufficient to influence hydrogen bonds, O-H bond lengths and showed the preferential sites of hydrogen atom cleavage. In addition, solvent notably influences and changes the nature of the scavenging process of ROS (reactive oxygen species), favouring by this way the HHAT (homolytic hydrogen atom transfer) in non polar solvents, the SPLET (sequential proton loss electron transfer) in polar solvents. Moreover, in chloroform and for the five molecules studied the SET-PT (sequential electron transfer proton transfer) mechanism is preferred compared to the HHAT, because in this solvent the IP is lower than the BDE. TD-DFT calculations revealed that solvent induce a bathochromic effect (red-shift of the wavelengths) coupled to hyperchromic or hypochromic effects.展开更多
文摘In this study, the antioxidative (3-methyl-2-butenyl caffeate), BC efficiency of CAPE (caffeic acid phenethyl ester) and four of its derivatives (MBC (benzoic caffeate), P3HC (phenethyl-3-hydroxy-cinnamate) and P4HC (phenethyl-4-hydroxy-cinnamate)) are compared in vacuum and in seven solvents. It turned out that the AA (antioxidant activity) in increasing order was P3HC 〈 P4HC 〈 CAPE 〈 MBC. Effects of solvents on the structure and the antioxidant activity of P3HC, P4HC, BC, MBC and CAPE, were studied at 133LYP/6-31G (d, p) then B3LYP/6-3 I+G (d, p) level of theory using the conductor polarized continuum model methods. Thermodynamically, the authors showed that solvent effects on bond dissociation enthalpy are very weak (within 25 kJ/mol), but sufficient to influence hydrogen bonds, O-H bond lengths and showed the preferential sites of hydrogen atom cleavage. In addition, solvent notably influences and changes the nature of the scavenging process of ROS (reactive oxygen species), favouring by this way the HHAT (homolytic hydrogen atom transfer) in non polar solvents, the SPLET (sequential proton loss electron transfer) in polar solvents. Moreover, in chloroform and for the five molecules studied the SET-PT (sequential electron transfer proton transfer) mechanism is preferred compared to the HHAT, because in this solvent the IP is lower than the BDE. TD-DFT calculations revealed that solvent induce a bathochromic effect (red-shift of the wavelengths) coupled to hyperchromic or hypochromic effects.