期刊文献+
共找到6篇文章
< 1 >
每页显示 20 50 100
神经网络非梯度优化方法研究进展 被引量:2
1
作者 盛蕾 陈希亮 康凯 《计算机工程与应用》 CSCD 北大核心 2022年第17期34-49,共16页
神经网络优化是机器学习领域的一个基础性前沿课题。相较于神经网络的纯梯度优化算法,非梯度算法在解决收敛速度慢、易陷入局部最优、无法解决不可微等问题上表现出更大的优势。在剖析基于梯度的神经网络方法优缺点的基础上,重点对部分... 神经网络优化是机器学习领域的一个基础性前沿课题。相较于神经网络的纯梯度优化算法,非梯度算法在解决收敛速度慢、易陷入局部最优、无法解决不可微等问题上表现出更大的优势。在剖析基于梯度的神经网络方法优缺点的基础上,重点对部分非梯度优化方法进行了综述,包括前馈神经网络优化和随机搜索优化;从基本理论、训练神经网络的步骤以及收敛性等方面对非梯度优化方法的优缺点和应用情况进行了分析;总结了基于非梯度的训练神经网络的算法在理论和应用方面面临的挑战并且展望了未来的发展方向。 展开更多
关键词 深度学习 神经网络 训练算法 优化理论 非梯度优化算法
下载PDF
材料性能细菌捕食仿生优化 被引量:1
2
作者 夏伯才 郭永锋 +2 位作者 姚向东 董杰 王永强 《中国工程物理研究院科技年报》 2003年第1期198-199,共2页
E.Coli菌类捕食时要设法使单位时间内摄取的能量最大。进行非梯度优化时,可将目标J(θ)视为吸引剂和排斥剂产生的综合效应,则θ=[θ1,…θp]^T∈R^p就对应于细菌位置,用P(i,k,l)=(θ,^1(j,k,l)^1 l=1,2,…,S}表示菌群数为S中的... E.Coli菌类捕食时要设法使单位时间内摄取的能量最大。进行非梯度优化时,可将目标J(θ)视为吸引剂和排斥剂产生的综合效应,则θ=[θ1,…θp]^T∈R^p就对应于细菌位置,用P(i,k,l)=(θ,^1(j,k,l)^1 l=1,2,…,S}表示菌群数为S中的第1个菌体在第j趋化步,k复制步和l次消除-驱散事件中的位置, 展开更多
关键词 材料性能 细菌捕食 仿生优化 非梯度优化 排斥效应
下载PDF
含相变材料热结构拓扑优化研究
3
作者 张晓亮 于江祥 刘昌洪 《现代防御技术》 北大核心 2021年第3期63-72,共10页
针对承受热载荷工况的结构,以加强筋作为研究对象,研究了一种通过引入铝基相变材料来延迟结构温升的热控方案,针对相变传热过程非线性强,灵敏度分析困难的问题,基于Kriging代理模型优化算法与设计变量较少的基于材料场级数展开的拓扑描... 针对承受热载荷工况的结构,以加强筋作为研究对象,研究了一种通过引入铝基相变材料来延迟结构温升的热控方案,针对相变传热过程非线性强,灵敏度分析困难的问题,基于Kriging代理模型优化算法与设计变量较少的基于材料场级数展开的拓扑描述方法,提出了一种考虑相变传热过程与材料温度效应的以重量为约束,以截面抗弯刚度最大为目标的截面拓扑优化方法。并研究了2种铝基相变材料,得到了在热载荷作用下,使截面抗弯刚度最大的材料分布形式。对优化构型的分析表明,在TA15加强筋截面中加入铝基相变材料可以高效的延长加强筋结构在高温环境中的工作时间。 展开更多
关键词 相变材料 梯度拓扑优化 热结构 截面优化 Kriging代理模型 材料场级数展开
下载PDF
Application of a Derivative-Free Method with Projection Skill to Solve an Optimization Problem 被引量:1
4
作者 PENG Fei SUN Guo-Dong 《Atmospheric and Oceanic Science Letters》 CSCD 2014年第6期499-504,共6页
Improving numerical forecasting skill in the atmospheric and oceanic sciences by solving optimization problems is an important issue. One such method is to compute the conditional nonlinear optimal perturbation(CNOP),... Improving numerical forecasting skill in the atmospheric and oceanic sciences by solving optimization problems is an important issue. One such method is to compute the conditional nonlinear optimal perturbation(CNOP), which has been applied widely in predictability studies. In this study, the Differential Evolution(DE) algorithm, which is a derivative-free algorithm and has been applied to obtain CNOPs for exploring the uncertainty of terrestrial ecosystem processes, was employed to obtain the CNOPs for finite-dimensional optimization problems with ball constraint conditions using Burgers' equation. The aim was first to test if the CNOP calculated by the DE algorithm is similar to that computed by traditional optimization algorithms, such as the Spectral Projected Gradient(SPG2) algorithm. The second motive was to supply a possible route through which the CNOP approach can be applied in predictability studies in the atmospheric and oceanic sciences without obtaining a model adjoint system, or for optimization problems with non-differentiable cost functions. A projection skill was first explanted to the DE algorithm to calculate the CNOPs. To validate the algorithm, the SPG2 algorithm was also applied to obtain the CNOPs for the same optimization problems. The results showed that the CNOPs obtained by the DE algorithm were nearly the same as those obtained by the SPG2 algorithm in terms of their spatial distributions and nonlinear evolutions. The implication is that the DE algorithm could be employed to calculate the optimal values of optimization problems, especially for non-differentiable and nonlinear optimization problems associated with the atmospheric and oceanic sciences. 展开更多
关键词 differential evolution algorithm spectral projected gradient algorithm CNOP Burgers' equation optimization problem
下载PDF
基于材料场级数展开的结构动力学拓扑优化 被引量:3
5
作者 梁宽 付莉莉 +1 位作者 张晓鹏 罗阳军 《航空学报》 EI CAS CSCD 北大核心 2022年第9期442-452,共11页
如何通过结构优化实现稳态与瞬态动力载荷下动力学响应的有效抑制是航空航天结构设计中关心的重要问题之一。传统基于梯度的拓扑优化方法因需要复杂的灵敏度推导使得动力学优化指标选择受限,并且复杂的动力学响应也使得优化问题往往陷... 如何通过结构优化实现稳态与瞬态动力载荷下动力学响应的有效抑制是航空航天结构设计中关心的重要问题之一。传统基于梯度的拓扑优化方法因需要复杂的灵敏度推导使得动力学优化指标选择受限,并且复杂的动力学响应也使得优化问题往往陷入局部最优解。本文基于材料场级数展开策略和非梯度优化算法有效实现了结构稳态和瞬态动力学拓扑优化问题的求解。在动力学拓扑优化问题中,采用材料场级数展开技术将结构拓扑在特征映射空间进行降维表征,大幅度减少设计变量,进而采用序列Kriging代理模型算法求解。通过给出的拓扑优化算例,验证了该方法能够在不需要结构动响应灵敏度分析的前提下有效地处理结构稳态与瞬态动力学拓扑优化问题。 展开更多
关键词 拓扑优化 结构振动 材料场级数展开 非梯度优化 瞬态响应
原文传递
A Barzilai-Borwein conjugate gradient method 被引量:7
6
作者 DAI YuHong KOU CaiXia 《Science China Mathematics》 SCIE CSCD 2016年第8期1511-1524,共14页
The linear conjugate gradient method is an optimal method for convex quadratic minimization due to the Krylov subspace minimization property. The proposition of limited-memory BFGS method and Barzilai-Borwein gradient... The linear conjugate gradient method is an optimal method for convex quadratic minimization due to the Krylov subspace minimization property. The proposition of limited-memory BFGS method and Barzilai-Borwein gradient method, however, heavily restricted the use of conjugate gradient method for largescale nonlinear optimization. This is, to the great extent, due to the requirement of a relatively exact line search at each iteration and the loss of conjugacy property of the search directions in various occasions. On the contrary, the limited-memory BFGS method and the Barzilai-Bowein gradient method share the so-called asymptotical one stepsize per line-search property, namely, the trial stepsize in the method will asymptotically be accepted by the line search when the iteration is close to the solution. This paper will focus on the analysis of the subspace minimization conjugate gradient method by Yuan and Stoer(1995). Specifically, if choosing the parameter in the method by combining the Barzilai-Borwein idea, we will be able to provide some efficient Barzilai-Borwein conjugate gradient(BBCG) methods. The initial numerical experiments show that one of the variants, BBCG3, is specially efficient among many others without line searches. This variant of the BBCG method might enjoy the asymptotical one stepsize per line-search property and become a strong candidate for large-scale nonlinear optimization. 展开更多
关键词 conjugate gradient method subspace minimization Barzilai-Bowein gradient method line search descent property global convergence
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部