期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
基于图卷积网络的比特币非法交易识别方法 被引量:4
1
作者 郑海潇 文斌 《信息网络安全》 CSCD 北大核心 2021年第9期74-79,共6页
比特币作为匿名的加密数字资产逐渐成为部分非法地下交易的选择。为了净化金融市场、打击非法交易,需要对比特币网络中的非法交易活动进行识别。在相关工作的基础上,文章提出一种基于多层感知器与图卷积网络结合的检测比特币网络中非法... 比特币作为匿名的加密数字资产逐渐成为部分非法地下交易的选择。为了净化金融市场、打击非法交易,需要对比特币网络中的非法交易活动进行识别。在相关工作的基础上,文章提出一种基于多层感知器与图卷积网络结合的检测比特币网络中非法交易的方法(Multi-layer Perceptrons+Graph Convolutional Network,MP-GCN)。MP-GCN使用多层感知器与图卷积网络组合,构建识别非法交易的模型。具体来说,在图卷积层之前和两层图卷积层中间用多层感知器进行辅助的特征提取,最后用线性层对非法交易进行划分。实验结果证明,MP-GCN达到的检测效果优于相同数据集的传统图卷积网络的检测效果。 展开更多
关键词 比特币网络 非法交易识别 图卷积网络
下载PDF
基于强化图卷积和时空循环门的区块链非法交易检测方法
2
作者 夏鑫 任秀丽 《计算机应用研究》 CSCD 北大核心 2024年第9期2592-2597,共6页
区块链非法交易检测任务需要充分挖掘历史交易数据中固有的时间和空间特征。针对现有的非法交易检测方法存在误差较大的问题,提出一种基于强化图卷积和时空循环门的区块链非法交易检测方法(RGCN-SRG)。首先,利用比特币区块链历史交易数... 区块链非法交易检测任务需要充分挖掘历史交易数据中固有的时间和空间特征。针对现有的非法交易检测方法存在误差较大的问题,提出一种基于强化图卷积和时空循环门的区块链非法交易检测方法(RGCN-SRG)。首先,利用比特币区块链历史交易数据构造交易图谱,引入一组具有不同尺寸卷积核的强化图卷积网络(RGCN),全面地提取该图谱的拓扑信息并生成特征向量;另外,考虑到区块链交易的时序特点,提出一种时空循环门结构(SRG),在传统门结构中引入图卷积运算,以提取交易图多个时空维度的依赖信息;最后,经过一个线性层和激活函数输出非法交易检测的预测结果。将提出的方法与GCN、DEDGAT、EGT以及GCN+MLP进行比较,在F 1方面,分别提高了18.4、10.7、9.3和4.9百分点;在精度方面,分别提高了11.5、11.2、7.7和3.7百分点。 展开更多
关键词 区块链 比特币网络 图卷积网络 非法交易识别
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部