The adsorption state and catalytic properties of pepsin and acidic protease from microorganisms Asp. awamori and Asp. oryzae were studied in solid phase system (in presence of sorsilen, DEAE- and CM-cellulose). Acco...The adsorption state and catalytic properties of pepsin and acidic protease from microorganisms Asp. awamori and Asp. oryzae were studied in solid phase system (in presence of sorsilen, DEAE- and CM-cellulose). According to the results, adsorption capacity and catalytic activity of enzymes depend on the physical nature of surface groups of the solid phase. Changing the stability of enzymes in the system with solid phase is observed even the adsorption bond is less stable (in the case of DEAE- and CM-cellulose in acidic media). Injection to the medium ethanol, surfactants, sodium chloride and changing the temperature of the incubation medium could prevent the negative effects of the solid phases. When sorsilen is used as solid phase, pepsin and acidic protease from Asp. awamori suffer from high surface inactivation. Various surfactants influence adsorption state of enzymes differently. Non-ionic surfactants (Triton X-100) prevent adsorption and restore catalytic properties of enzymes.展开更多
高盐含酚废水治理是污水处理领域亟待解决的一个难题。目前,以微生物为核心的生物处理高盐含酚废水技术备受关注。迄今为止,耐盐降酚微生物的筛选菌源仅限于基于常规分离培养方法所能获得的仅占0.01%~10%的微生物菌群,大量的潜在功能菌...高盐含酚废水治理是污水处理领域亟待解决的一个难题。目前,以微生物为核心的生物处理高盐含酚废水技术备受关注。迄今为止,耐盐降酚微生物的筛选菌源仅限于基于常规分离培养方法所能获得的仅占0.01%~10%的微生物菌群,大量的潜在功能菌群因处于有活性但非可培养(viable but non-culturable,VBNC)状态而未被研究。在阐述耐盐降酚微生物研究现状的基础上,结合课题组的研究结果,提出利用复苏促进因子(resuscitation promoting factor,Rpf)探索具有潜在耐盐降酚功能的微生物,为复苏培养高效耐盐降酚菌提供新思路,并为生物强化处理高浓度有机工业废水提供有效的方法途径。展开更多
This work presents the results of tribological investigations of lubricating substances composed of water and a nonionic surfactant:lauric acid random copolyether(LPE),as additive.At the current stage of investigation...This work presents the results of tribological investigations of lubricating substances composed of water and a nonionic surfactant:lauric acid random copolyether(LPE),as additive.At the current stage of investigation,aqueous solutions with LPE additives are prepared and subsequently the lowering friction and reducing wear behaviors are tested by means of friction/wear tester,in conjunction with that the film forming properties experiments are carried out with a nanoscale film thickness measure apparatus.The contact is under condition of steel-steel tribo-pair.The results show that the coefficient of friction measured decreases considerably to about over 60%relative to water.The film thickness data of friction process lubricated by aqueous solutions with LPE added show that the lubrication is in boundary lubrication regime.The results indicate that aqueous solutions with LPE added can be used to improve the lubricity and they may be applied to real tribological systems.展开更多
文摘The adsorption state and catalytic properties of pepsin and acidic protease from microorganisms Asp. awamori and Asp. oryzae were studied in solid phase system (in presence of sorsilen, DEAE- and CM-cellulose). According to the results, adsorption capacity and catalytic activity of enzymes depend on the physical nature of surface groups of the solid phase. Changing the stability of enzymes in the system with solid phase is observed even the adsorption bond is less stable (in the case of DEAE- and CM-cellulose in acidic media). Injection to the medium ethanol, surfactants, sodium chloride and changing the temperature of the incubation medium could prevent the negative effects of the solid phases. When sorsilen is used as solid phase, pepsin and acidic protease from Asp. awamori suffer from high surface inactivation. Various surfactants influence adsorption state of enzymes differently. Non-ionic surfactants (Triton X-100) prevent adsorption and restore catalytic properties of enzymes.
文摘高盐含酚废水治理是污水处理领域亟待解决的一个难题。目前,以微生物为核心的生物处理高盐含酚废水技术备受关注。迄今为止,耐盐降酚微生物的筛选菌源仅限于基于常规分离培养方法所能获得的仅占0.01%~10%的微生物菌群,大量的潜在功能菌群因处于有活性但非可培养(viable but non-culturable,VBNC)状态而未被研究。在阐述耐盐降酚微生物研究现状的基础上,结合课题组的研究结果,提出利用复苏促进因子(resuscitation promoting factor,Rpf)探索具有潜在耐盐降酚功能的微生物,为复苏培养高效耐盐降酚菌提供新思路,并为生物强化处理高浓度有机工业废水提供有效的方法途径。
基金supported by the Fundamental Research Funds for the Central Universities(Grant No.2013JBZ015)
文摘This work presents the results of tribological investigations of lubricating substances composed of water and a nonionic surfactant:lauric acid random copolyether(LPE),as additive.At the current stage of investigation,aqueous solutions with LPE additives are prepared and subsequently the lowering friction and reducing wear behaviors are tested by means of friction/wear tester,in conjunction with that the film forming properties experiments are carried out with a nanoscale film thickness measure apparatus.The contact is under condition of steel-steel tribo-pair.The results show that the coefficient of friction measured decreases considerably to about over 60%relative to water.The film thickness data of friction process lubricated by aqueous solutions with LPE added show that the lubrication is in boundary lubrication regime.The results indicate that aqueous solutions with LPE added can be used to improve the lubricity and they may be applied to real tribological systems.