Based on the kinetic theoretical Vlasov-Poisson equation, a surface Coulomb explosion model of SiO2 material induced by ultra-short pulsed laser radiation is established. The non-equilibrium free electron distribution...Based on the kinetic theoretical Vlasov-Poisson equation, a surface Coulomb explosion model of SiO2 material induced by ultra-short pulsed laser radiation is established. The non-equilibrium free electron distribution resulting from the two mechanisms of multi-photon ionization and avalanche ionization is computed. A quantitative analysis is given to describe the Coulomb explosion induced by the self-consistent electric field, and the impact of the parameters of laser pulses on the surface ablation is also discussed. The results show that the electron relaxation time is not constant, but it is related to the microscopic state of the electrons, so the relaxation time approximation is not available on the femtosecond time scale. The ablation depths computed by the theoretical model are in good agreement with the experimental results in the range of pulse durations from 0 to 1 ps.展开更多
In the present work we elucidate the thermodynamic mechanisms of femtosecond(fs)laser ablation of amorphous polystyrene by means of molecular dynamics(MD)simulations.The effects of extrinsic parameter of laser pulse i...In the present work we elucidate the thermodynamic mechanisms of femtosecond(fs)laser ablation of amorphous polystyrene by means of molecular dynamics(MD)simulations.The effects of extrinsic parameter of laser pulse intensity and intrinsic parameter of molecular architecture on the laser ablation are further studied.Simulation results show that the laser ablation-induced polymeric material removal is achieved by evaporation from the surface and expansion within the bulk.Furthermore,inter-chain sliding and intra-chain change also play important roles in the microscopic deformation of the material.It is found that both the laser pulse intensity and the arrangement of phenyl groups have significant influence on the fs laser ablation of polystyrene.展开更多
文摘Based on the kinetic theoretical Vlasov-Poisson equation, a surface Coulomb explosion model of SiO2 material induced by ultra-short pulsed laser radiation is established. The non-equilibrium free electron distribution resulting from the two mechanisms of multi-photon ionization and avalanche ionization is computed. A quantitative analysis is given to describe the Coulomb explosion induced by the self-consistent electric field, and the impact of the parameters of laser pulses on the surface ablation is also discussed. The results show that the electron relaxation time is not constant, but it is related to the microscopic state of the electrons, so the relaxation time approximation is not available on the femtosecond time scale. The ablation depths computed by the theoretical model are in good agreement with the experimental results in the range of pulse durations from 0 to 1 ps.
基金supported by the National Natural Science Foundation of China(Grant Nos.51275114 and 51006093)the Laboratory of Precision Manufacturing Technology in China Academy of Engineering Physics(Grant No.zz13010)the Fundamental Research Funds for the Central Universities,China(Grant No.HIT.NSRIF.2013050)
文摘In the present work we elucidate the thermodynamic mechanisms of femtosecond(fs)laser ablation of amorphous polystyrene by means of molecular dynamics(MD)simulations.The effects of extrinsic parameter of laser pulse intensity and intrinsic parameter of molecular architecture on the laser ablation are further studied.Simulation results show that the laser ablation-induced polymeric material removal is achieved by evaporation from the surface and expansion within the bulk.Furthermore,inter-chain sliding and intra-chain change also play important roles in the microscopic deformation of the material.It is found that both the laser pulse intensity and the arrangement of phenyl groups have significant influence on the fs laser ablation of polystyrene.