期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
Zr基非晶合金在过冷液相区的拉伸变形行为 被引量:2
1
作者 毛咏发 林建国 +3 位作者 檀朝桂 张德闯 罗致春 李艳 《材料热处理学报》 EI CAS CSCD 北大核心 2014年第1期77-82,共6页
采用ARAMIS三维变形分析测试系统对Zr65Cu20Al10Fe5块体非晶合金在400℃和应变速率为1×10-3s-1条件下的高温拉伸变形行为进行研究,并利用X射线衍射(XRD)对合金试样的显微组织进行分析。结果表明,在变形条件下,该Zr-基非晶合金可表... 采用ARAMIS三维变形分析测试系统对Zr65Cu20Al10Fe5块体非晶合金在400℃和应变速率为1×10-3s-1条件下的高温拉伸变形行为进行研究,并利用X射线衍射(XRD)对合金试样的显微组织进行分析。结果表明,在变形条件下,该Zr-基非晶合金可表现出良好的塑性,其伸长率为103%,其变形模式为非牛顿流变。用三维变形分析得到的不同变形时刻的应变分布图显示,随着变形量的增加,试样变形变得不均匀,在变形后期会出现颈缩现象。XRD分析结果表明,在拉伸变形过程中,非晶合金试样会发生晶化,其晶化程度与试样不同部位的局部应变量大小有关,局部变形量较大的区域晶化程度较高,而较高含量纳米晶的存在导致了该区域具有较高的变形速率。 展开更多
关键词 晶合金 ARAMIS三维变形分析测试系统 变形 纳米晶化 非牛顿变形
下载PDF
A Class of Third-order Convergence Variants of Newton's Method
2
作者 ZHAO Ling-ling WANG Xia 《Chinese Quarterly Journal of Mathematics》 CSCD 北大核心 2008年第2期165-170,共6页
A class of third-order convergence methods of solving roots for non-linear equation,which are variant Newton's method, are given. Their convergence properties are proved. They are at least third order convergence nea... A class of third-order convergence methods of solving roots for non-linear equation,which are variant Newton's method, are given. Their convergence properties are proved. They are at least third order convergence near simple root and one order convergence near multiple roots. In the end, numerical tests are given and compared with other known Newton's methods. The results show that the proposed methods have some more advantages than others. They enrich the methods to find the roots of non-linear equations and they are important in both theory and application. 展开更多
关键词 variant Newton's methods third-order convergence numerical test
下载PDF
Latest advances in discontinuous deformation analysis method 被引量:1
3
作者 JIAO YuYong ZHAO Qiang +1 位作者 ZHENG Fei WANG Long 《Science China(Technological Sciences)》 SCIE EI CAS CSCD 2017年第6期963-964,共2页
Discontinuous deformation analysis (DDA) method, proposed firstly by Shi [1] in 1988, is a novel numerical approach to simulate the discontinuous deformation behaviors of blocky rock structures. In DDA, the domain o... Discontinuous deformation analysis (DDA) method, proposed firstly by Shi [1] in 1988, is a novel numerical approach to simulate the discontinuous deformation behaviors of blocky rock structures. In DDA, the domain of interest is represented as an assemblage of discrete blocks and the joints are treated as interfaces between blocks. The governing equations of DDA are derived from Newton’s Second Law of Motion and the Principle of Minimum Potential Energy. 展开更多
关键词 discontinuous blocks assemblage advances collapse joints interfaces rock governing accordingly
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部