期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
非独立同分布文本情感表示学习方法
1
作者 李倩 郭红钰 +3 位作者 郑扬飞 刘玉龙 李山海 吴艳雄 《计算机工程与应用》 CSCD 北大核心 2022年第24期180-188,共9页
非独立同分布文本的情感分析往往极具挑战,因其是一类包含词句间耦合关系和同词(句)多义性特点的复杂文本。现有方法中,几乎没有可以全面捕获非独立同分布文本特性的方法用于情感分析。面向情感分析的非独立同分布文本表示学习方法对文... 非独立同分布文本的情感分析往往极具挑战,因其是一类包含词句间耦合关系和同词(句)多义性特点的复杂文本。现有方法中,几乎没有可以全面捕获非独立同分布文本特性的方法用于情感分析。面向情感分析的非独立同分布文本表示学习方法对文本中层次化存在的耦合关系和多义性问题进行建模,将这些决定着情感极性的非独立同分布特点嵌入到文本的向量表示中。非独立同分布文本表示学习方法通过一种带注意力机制的多尺度层次化深度神经网络实现。该神经网络利用多尺度卷积循环结构捕获文本中的耦合关系,利用注意力机制消除文本中的多义性。同时,该神经网络层次化地融合了由深度学习生成的隐式特征表示和由文本情感先验知识构造的显示特征表示,以防止数据过拟合问题并强化情感表示能力。充分的实验表明,非独立同分布文本表示学习方法可以显著增强文本情感分析的性能。 展开更多
关键词 非独立同分布文本 文本数据表示 情感分析 深度学习
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部