Research on the stress gradient hypothesis recognizes that positive(i.e. facilitative) and negative(i.e. competitive) plant interactions change in intensity and effect relative to abiotic stress experienced on a gradi...Research on the stress gradient hypothesis recognizes that positive(i.e. facilitative) and negative(i.e. competitive) plant interactions change in intensity and effect relative to abiotic stress experienced on a gradient. Motivated by observations of alpine treeline ecotones, we suggest that this switch in interaction could operate along a gradient of relative size of individual plants. We propose that as neighbors increase in size relative to a focal plant they improve the environment for that plant up to a critical point. After this critical point is surpassed, however, increasing relative size of neighbors will degrade the environment such that the net interaction intensity becomes negative. We developed a conceptual(not site or species specific) individual based model to simulate a single species with recruitment, growth, and mortality dependent on the environment mediated by the relative size of neighbors. Growth and size form a feedback. Simulation results show that the size gradient model produces metrics similar to that of a stress gradient model. Visualizations reveal that the size gradient model produces spatial patterns that are similar to the complex ones observed at alpine treelines. Size-mediated interaction could be a mechanism of the stress gradient hypothesis or it could operate independent of abiotic stress.展开更多
Enzymes are biomacromolecules responsible for the abundant chemical biotransformations that sustain life. Recently, biochemists have discovered that multiple conformations and numerous parallel paths are involved duri...Enzymes are biomacromolecules responsible for the abundant chemical biotransformations that sustain life. Recently, biochemists have discovered that multiple conformations and numerous parallel paths are involved during the processes catalyzed by enzymes. It is plausible that the entire macromolecular scaffold is involved in catalysis via cooperative motions that result in incredible catalytic efficiency. Moreover, some enzymes can very strongly bind the transition state with an association constant of up to 1024 M-1, suggesting that covalent bond formation is a possible process during the conversion of the transition state in enzyme catalysis, in addition to the concatenation of noncovalent interactions. Supramolecular chemistry provides fundamental knowledge about the relationships between the dynamic structures and functions of organized molecules. By tak-ing advantage of supramolecular concepts, numerous supramolecular enzyme mimics with complex and hierarchical structures have been designed and investigated. Through the study of supramolecular enzyme models, a great deal of information to aid our understanding of the mechanism of catalysis by natural enzymes has been acquired. With the development of supramolec-ular artificial enzymes, it is possible to replicate the features of natural enzymes with regards to their constitutional complexity and cooperative motions, and eventually decipher the conformation-based catalytic mystery of natural enzymes.展开更多
基金based upon work while an author served at the National Science Foundation(USA)
文摘Research on the stress gradient hypothesis recognizes that positive(i.e. facilitative) and negative(i.e. competitive) plant interactions change in intensity and effect relative to abiotic stress experienced on a gradient. Motivated by observations of alpine treeline ecotones, we suggest that this switch in interaction could operate along a gradient of relative size of individual plants. We propose that as neighbors increase in size relative to a focal plant they improve the environment for that plant up to a critical point. After this critical point is surpassed, however, increasing relative size of neighbors will degrade the environment such that the net interaction intensity becomes negative. We developed a conceptual(not site or species specific) individual based model to simulate a single species with recruitment, growth, and mortality dependent on the environment mediated by the relative size of neighbors. Growth and size form a feedback. Simulation results show that the size gradient model produces metrics similar to that of a stress gradient model. Visualizations reveal that the size gradient model produces spatial patterns that are similar to the complex ones observed at alpine treelines. Size-mediated interaction could be a mechanism of the stress gradient hypothesis or it could operate independent of abiotic stress.
基金financial support from the National Natural Science Foundation of China(91027023,21234004,21274051,21221063,21004028)the 111 project(B06009)
文摘Enzymes are biomacromolecules responsible for the abundant chemical biotransformations that sustain life. Recently, biochemists have discovered that multiple conformations and numerous parallel paths are involved during the processes catalyzed by enzymes. It is plausible that the entire macromolecular scaffold is involved in catalysis via cooperative motions that result in incredible catalytic efficiency. Moreover, some enzymes can very strongly bind the transition state with an association constant of up to 1024 M-1, suggesting that covalent bond formation is a possible process during the conversion of the transition state in enzyme catalysis, in addition to the concatenation of noncovalent interactions. Supramolecular chemistry provides fundamental knowledge about the relationships between the dynamic structures and functions of organized molecules. By tak-ing advantage of supramolecular concepts, numerous supramolecular enzyme mimics with complex and hierarchical structures have been designed and investigated. Through the study of supramolecular enzyme models, a great deal of information to aid our understanding of the mechanism of catalysis by natural enzymes has been acquired. With the development of supramolec-ular artificial enzymes, it is possible to replicate the features of natural enzymes with regards to their constitutional complexity and cooperative motions, and eventually decipher the conformation-based catalytic mystery of natural enzymes.