In a field experiment, the populations of major soil fauna groups including earthworms, enchytraeids,arthropods and nematodes were examined in conventional tillage (CT) and no-tillage (NT) red soil ecosystems to evalu...In a field experiment, the populations of major soil fauna groups including earthworms, enchytraeids,arthropods and nematodes were examined in conventional tillage (CT) and no-tillage (NT) red soil ecosystems to evaluate their responses to tillage disturbance. Earthworms, macrry and micro-arthropods were stimulated under NT with earthworms showing the highest population increase by four times, while enchytraeids and nematodes favored CT system, predicting certain adaptability of these animals to plow-disturbed soil environment. On the basis of relative response index it was found that soil fauna was more sensitive to tillage than soil resource base (C and N pools) and microflora. The population structure of soil fauna was also affected by tillage treatments. Analysis on nematode trophic groups showed that bacteria-feeding and plant parasitic nematodes were more abundant in CT soil whereas the proportions of fungivores and omnivorepredators increased in NT soil. Possible reasons for the differentiation in both size and structure of the fauna population were discussed and the ecological significance involved in these changes was emphasized.展开更多
In order to study the karstological processes within the karst ecological system,the geohazards and degradation of karst landscapes on the karst areas of the Bakony mountains(Hungary),we investigated the abiotic eleme...In order to study the karstological processes within the karst ecological system,the geohazards and degradation of karst landscapes on the karst areas of the Bakony mountains(Hungary),we investigated the abiotic elements of the environment,soil and cover deposits,erosion soil decay;the changes in the quantity and quality of karst waters:contamination at swallow holes,contamination of karst springs;and the biogenic factors:surface vegetation coverage by the corine land cover method,plant-ecological examinations,qualification of surface waters with the help of biological water labeling.We recognized that the increasing human activities during the past few centuries have had significant impact on the investigated landscapes of karst areas because of their spatial sensitivity.In the scope of our research we concluded that the landscape changes due to natural and human effects can vary strongly on the different karst areas.These differences can arise from the climatic and geomorphologic situation,the coverlayer's qualities,etc.,but primarily from the different utilization of the investigated karst areas(e.g.the intensity,characteristics and territorial extension of utilization).On the spot investigation we detected traces of new and fast geomorphological processes(gully formation,landslides,collapses,new sinkhole development) and landforms(sinkholes,gullies,swallow holes),which are clear evidences of the effect of climatic changes.展开更多
Arbuscular mycorrhizal fungi(AMF)enhance plant tolerance to abiotic stresses like salinity and improve crop yield.However,their effects are variable,and the underlying cause of such variation remains largely unknown.T...Arbuscular mycorrhizal fungi(AMF)enhance plant tolerance to abiotic stresses like salinity and improve crop yield.However,their effects are variable,and the underlying cause of such variation remains largely unknown.This study aimed to assess how drought modifed the effect of AMF on plant resistance to high calcium-saline stress.A pot experiment was performed to examine how AMF inoculation affects the growth,photosynthetic activity,nutrient uptake and carbon(C),nitrogen(N)and phosphorus(P)stoichiometric ratio(C:N:P)of maize under high calcium stress and contrasting water conditions.The results showed that high calcium stress signifcantly reduced mycorrhizal colonization,biomass accumulation,C assimilation rate and C:N stoichiometric ratio in plant tissues.Besides,the adverse effects of calcium stress on photosynthesis were exacerbated under drought.AMF inoculation profoundly alleviated such reductions under drought and saline stress.However,it barely affected maize performance when subjected to calcium stress under well-watered conditions.Moreover,watering changed AMF impact on nutrient allocation in plant tissues.Under well-watered conditions,AMF stimulated P accumulation in roots and plant growth,but did not induce leaf P accumulation proportional to C and N,resulting in increased leaf C:P and N:P ratios under high calcium stress.In contrast,AMF decreased N content and the N:P ratio in leaves under drought.Overall,AMF inoculation improved maize resistance to calcium-salt stress through enhanced photosynthesis and modulation of nutrient stoichiometry,particularly under water defcit conditions.These results highlighted the regulatory role of AMF in carbon assimilation and nutrient homeostasis under compound stresses,and provide signifcant guidance on the improvement of crop yield in saline and arid regions.展开更多
文摘In a field experiment, the populations of major soil fauna groups including earthworms, enchytraeids,arthropods and nematodes were examined in conventional tillage (CT) and no-tillage (NT) red soil ecosystems to evaluate their responses to tillage disturbance. Earthworms, macrry and micro-arthropods were stimulated under NT with earthworms showing the highest population increase by four times, while enchytraeids and nematodes favored CT system, predicting certain adaptability of these animals to plow-disturbed soil environment. On the basis of relative response index it was found that soil fauna was more sensitive to tillage than soil resource base (C and N pools) and microflora. The population structure of soil fauna was also affected by tillage treatments. Analysis on nematode trophic groups showed that bacteria-feeding and plant parasitic nematodes were more abundant in CT soil whereas the proportions of fungivores and omnivorepredators increased in NT soil. Possible reasons for the differentiation in both size and structure of the fauna population were discussed and the ecological significance involved in these changes was emphasized.
基金This presentation gives an account on the results of the study (OTKA Grant:K 79135)
文摘In order to study the karstological processes within the karst ecological system,the geohazards and degradation of karst landscapes on the karst areas of the Bakony mountains(Hungary),we investigated the abiotic elements of the environment,soil and cover deposits,erosion soil decay;the changes in the quantity and quality of karst waters:contamination at swallow holes,contamination of karst springs;and the biogenic factors:surface vegetation coverage by the corine land cover method,plant-ecological examinations,qualification of surface waters with the help of biological water labeling.We recognized that the increasing human activities during the past few centuries have had significant impact on the investigated landscapes of karst areas because of their spatial sensitivity.In the scope of our research we concluded that the landscape changes due to natural and human effects can vary strongly on the different karst areas.These differences can arise from the climatic and geomorphologic situation,the coverlayer's qualities,etc.,but primarily from the different utilization of the investigated karst areas(e.g.the intensity,characteristics and territorial extension of utilization).On the spot investigation we detected traces of new and fast geomorphological processes(gully formation,landslides,collapses,new sinkhole development) and landforms(sinkholes,gullies,swallow holes),which are clear evidences of the effect of climatic changes.
基金supported by China Postdoctoral Science Foundation(2021M703137)Chongqing Postdoctoral Science Foundation(cstc2021jcyj-bshX0195)+2 种基金Postdoctoral Foundation of Jiangsu Province of China(1501014B)Education Department of Sichuan Province(17ZB0211),the Ecological Security and Protection Key Laboratory of Sichuan Province(07144812)the Scientifc Research Foundation of Chongqing University of Technology(2021ZDZ022).
文摘Arbuscular mycorrhizal fungi(AMF)enhance plant tolerance to abiotic stresses like salinity and improve crop yield.However,their effects are variable,and the underlying cause of such variation remains largely unknown.This study aimed to assess how drought modifed the effect of AMF on plant resistance to high calcium-saline stress.A pot experiment was performed to examine how AMF inoculation affects the growth,photosynthetic activity,nutrient uptake and carbon(C),nitrogen(N)and phosphorus(P)stoichiometric ratio(C:N:P)of maize under high calcium stress and contrasting water conditions.The results showed that high calcium stress signifcantly reduced mycorrhizal colonization,biomass accumulation,C assimilation rate and C:N stoichiometric ratio in plant tissues.Besides,the adverse effects of calcium stress on photosynthesis were exacerbated under drought.AMF inoculation profoundly alleviated such reductions under drought and saline stress.However,it barely affected maize performance when subjected to calcium stress under well-watered conditions.Moreover,watering changed AMF impact on nutrient allocation in plant tissues.Under well-watered conditions,AMF stimulated P accumulation in roots and plant growth,but did not induce leaf P accumulation proportional to C and N,resulting in increased leaf C:P and N:P ratios under high calcium stress.In contrast,AMF decreased N content and the N:P ratio in leaves under drought.Overall,AMF inoculation improved maize resistance to calcium-salt stress through enhanced photosynthesis and modulation of nutrient stoichiometry,particularly under water defcit conditions.These results highlighted the regulatory role of AMF in carbon assimilation and nutrient homeostasis under compound stresses,and provide signifcant guidance on the improvement of crop yield in saline and arid regions.