期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
基于PLS交叉积矩阵非相似度分析的MPC性能监控与诊断 被引量:1
1
作者 尚林源 田学民 +1 位作者 曹玉苹 蔡连芳 《自动化学报》 EI CSCD 北大核心 2017年第2期271-279,共9页
针对传统基于输出协方差矩阵的性能监控方法未充分考虑过程变量与输出变量之间的相关性问题,提出一种基于偏最小二乘(Partial least squares,PLS)交叉积矩阵非相似度分析的性能监控与诊断方法,用于多变量模型预测控制(Model predictive ... 针对传统基于输出协方差矩阵的性能监控方法未充分考虑过程变量与输出变量之间的相关性问题,提出一种基于偏最小二乘(Partial least squares,PLS)交叉积矩阵非相似度分析的性能监控与诊断方法,用于多变量模型预测控制(Model predictive control,MPC)系统.首先,考虑模型预测控制系统的控制结构,构造包含预测误差的增广过程变量与输出变量相关性的PLS交叉积矩阵,通过非相似度分析方法将交叉积矩阵的非相似度比较转化为转换矩阵特征值的比较.然后提取转换矩阵中表征最大非相似度的l个特征值构造实时性能指标,对MPC系统进行性能监控.检测到性能下降后,进一步利用转换矩阵的特征值诊断性能恶化源.Wood-Berry二元精馏塔上的仿真结果表明,所提方法能够有效地提高监控性能,并准确地定位性能恶化源. 展开更多
关键词 模型预测控制 性能监控与诊断 偏最小二乘 交叉积矩阵 非相似度分析
下载PDF
Modeling and monitoring of nonlinear multi-mode processes based on similarity measure-KPCA 被引量:9
2
作者 WANG Xiao-gang HUANG Li-wei ZHANG Ying-wei 《Journal of Central South University》 SCIE EI CAS CSCD 2017年第3期665-674,共10页
A new modeling and monitoring approach for multi-mode processes is proposed.The method of similarity measure(SM) and kernel principal component analysis(KPCA) are integrated to construct SM-KPCA monitoring scheme,wher... A new modeling and monitoring approach for multi-mode processes is proposed.The method of similarity measure(SM) and kernel principal component analysis(KPCA) are integrated to construct SM-KPCA monitoring scheme,where SM method serves as the separation of common subspace and specific subspace.Compared with the traditional methods,the main contributions of this work are:1) SM consisted of two measures of distance and angle to accommodate process characters.The different monitoring effect involves putting on the different weight,which would simplify the monitoring model structure and enhance its reliability and robustness.2) The proposed method can be used to find faults by the common space and judge which mode the fault belongs to by the specific subspace.Results of algorithm analysis and fault detection experiments indicate the validity and practicability of the presented method. 展开更多
关键词 process monitoring kernel principal component analysis (KPCA) similarity measure subspace separation
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部