Non-relativistic phase shifts for a generalized Yukawa potential V(r) =-V_0( e^(-αr)/r)-V_1( e^(-2αr)/r^2) are studied by the amplitude-phase method and by a frequently used analytic method based on a Pekeris-type a...Non-relativistic phase shifts for a generalized Yukawa potential V(r) =-V_0( e^(-αr)/r)-V_1( e^(-2αr)/r^2) are studied by the amplitude-phase method and by a frequently used analytic method based on a Pekeris-type approximation of power-law potential terms.Small variations of V_1 seem to have marginal effects on the effective potential and on exact phase shifts.However,as pointed out in this study,a Pekeris-type approximation in scattering applications often implies serious distortions of both effective potentials and phase shifts.The Pekeris-type based analytic approximation in this study seems to give low-quality scattering results for this model potential at low energies.展开更多
文摘Non-relativistic phase shifts for a generalized Yukawa potential V(r) =-V_0( e^(-αr)/r)-V_1( e^(-2αr)/r^2) are studied by the amplitude-phase method and by a frequently used analytic method based on a Pekeris-type approximation of power-law potential terms.Small variations of V_1 seem to have marginal effects on the effective potential and on exact phase shifts.However,as pointed out in this study,a Pekeris-type approximation in scattering applications often implies serious distortions of both effective potentials and phase shifts.The Pekeris-type based analytic approximation in this study seems to give low-quality scattering results for this model potential at low energies.