The cell body or soma in the dosal root ganglion(DRG) is normally excitable and this excitability can increase and persist after an injury of peripheral sensory neurons.In a rat model of radicular pain,an intraforamin...The cell body or soma in the dosal root ganglion(DRG) is normally excitable and this excitability can increase and persist after an injury of peripheral sensory neurons.In a rat model of radicular pain,an intraforaminal implantation of a rod that chronically compressed the lumbar DRG("CCD" model) resulted in neuronal somal hyperexcitability and spontaneous activity that was accompanied by hyperalgesia in the ipsilateral hind paw.By the 5th day after onset of CCD,there was a novel upregulation in neuronal expression of the chemokine,monocyte chemoattractant protein-1(MCP-1 or CCL2) and also its receptor,CCR2.The neurons developed,in response to topically applied MCP-1,an excitatory response that they normally do not have.CCD also activated non-neuronal cells including,for example,the endothelial cells as evidenced by angiogenesis in the form of an increased number of capillaries in the DRG after 7 days.A working hypothesis is that the CCD induced changes in neurons and non-neuronal cells that may act together to promote the survival of the injured tissue.The release of ligands such as CCL2,in addition to possibly activating nociceptive neurons(maintaining the pain),may also act to preserve injured cells in the face of ischemia and hypoxia,for example,by promoting angiogenesis.Thus,somal hyperexcitability,as often said of inflammation,may represent a double edged sword.展开更多
Accumulated evidence indicates that the activating transcription factor 4(atf4) is a developmentally relevant gene.Here,we report on the characterization of atf4 in Xenopus embryos,which is differentially expressed ...Accumulated evidence indicates that the activating transcription factor 4(atf4) is a developmentally relevant gene.Here,we report on the characterization of atf4 in Xenopus embryos,which is differentially expressed in the central nervous system,eyes,blood,and the pronephros,as well as in developing endodermal organs such as the stomach,duodenum,liver,and pancreas.Ectopic expression of atf4 in the animal hemisphere of Xenopus embryos had no obvious effects on the induction of neural progenitors,but suppressed neurogenesis and eye formation without promoting apoptosis.Our data suggest that tightly controlled atf4 activities may be crucial for normal neurogenesis and early eye patterning.展开更多
The cellular neural/nonlinear network (CNN) is a powerful tool for image and video signal processing,robotic and biological visions. This paper discusses a general method for designing template of the global connectiv...The cellular neural/nonlinear network (CNN) is a powerful tool for image and video signal processing,robotic and biological visions. This paper discusses a general method for designing template of the global connectivitydetection (GCD) CNN, which provides parameter inequalities for determining parameter intervals for implementing thecorresponding functions. The GCD CNN has stronger ability and faster rate for determining global connectivity in binarypatterns than the GCD CNN proposed by Zarandy. An example for detecting the connectivity in complex patterns isgiven.展开更多
This paper describes the problem of stability for one-dimensional Cellular Neural Networks(CNNs). A sufficient condition is presented to ensure complete stability for a class of special CNN's with nonsymmetric temp...This paper describes the problem of stability for one-dimensional Cellular Neural Networks(CNNs). A sufficient condition is presented to ensure complete stability for a class of special CNN's with nonsymmetric templates, where the parameter in the output function is greater than or equal to zero. The main method is analysising the property of the equilibrium point of the CNNs system.展开更多
In vitro, mouse embryonic stem (ES) cells can differentiate into many somatic cell types, including neurons and glial cells. When cultured in serum-free medium, ES cells convert spontaneously and efficiently to a ne...In vitro, mouse embryonic stem (ES) cells can differentiate into many somatic cell types, including neurons and glial cells. When cultured in serum-free medium, ES cells convert spontaneously and efficiently to a neural fate. Previous studies have shown that the neural conversion of mouse ES cells includes both the participation of neural-specific transcription factors and the regulation of epigenetic modifications. However, the intracellular mechanism underlying this intrinsic transition still re- mains to be further elucidated. Herein, we describe a long intergenic non-coding RNA, LincRNA1230, which participates in the regulation of the neural lineage specification of mouse ES cells. The ectopic forced expression of LincRNAI230 dramatically inhibited mouse ES cells from adopting a neural cell fate, while LincRNA1230 knockdown promoted the conversion of mouse ES cells towards neural progenitors. Mechanistic studies have shown that LincRNA1230 inhibits the activation of early neural genes, such as Pax6 and Soxl, through the modulation of bivalent modifications (tri-methylation of histone3 lysine4 and his- tone3 lysine27) at the promoters of these genes. The interaction of LincRNA1230 with Wdr5 blocked the localization of Wdr5 at the promoters of early neural genes, thereby inhibiting the enrichment of H3K4me3 modifications at these loci. Collectively, these findings revealed a crucial role for LincRNA1230 in the regulation of the neural differentiation of mouse ES cells.展开更多
基金supported by the National Natural Science Foundation of China(Grant No.31171191)the Natural Science Foundation of Hebei Province(Grant No.C2012201106)+1 种基金the Scientific Research Foundation for the Returned Overseas Chinese Scholars,State Education Ministry of China(<2013>693)the Introducing Talent Foundation of Hebei University(Grant No.2011-215)~~
文摘The cell body or soma in the dosal root ganglion(DRG) is normally excitable and this excitability can increase and persist after an injury of peripheral sensory neurons.In a rat model of radicular pain,an intraforaminal implantation of a rod that chronically compressed the lumbar DRG("CCD" model) resulted in neuronal somal hyperexcitability and spontaneous activity that was accompanied by hyperalgesia in the ipsilateral hind paw.By the 5th day after onset of CCD,there was a novel upregulation in neuronal expression of the chemokine,monocyte chemoattractant protein-1(MCP-1 or CCL2) and also its receptor,CCR2.The neurons developed,in response to topically applied MCP-1,an excitatory response that they normally do not have.CCD also activated non-neuronal cells including,for example,the endothelial cells as evidenced by angiogenesis in the form of an increased number of capillaries in the DRG after 7 days.A working hypothesis is that the CCD induced changes in neurons and non-neuronal cells that may act together to promote the survival of the injured tissue.The release of ligands such as CCL2,in addition to possibly activating nociceptive neurons(maintaining the pain),may also act to preserve injured cells in the face of ischemia and hypoxia,for example,by promoting angiogenesis.Thus,somal hyperexcitability,as often said of inflammation,may represent a double edged sword.
基金supported in part by funds from the Key Project of Knowledge Innovation Program of the Chinese Academy of Sciences(KSCX2-YW-R-083)the National Basic Research Program of China(2009CB941202)
文摘Accumulated evidence indicates that the activating transcription factor 4(atf4) is a developmentally relevant gene.Here,we report on the characterization of atf4 in Xenopus embryos,which is differentially expressed in the central nervous system,eyes,blood,and the pronephros,as well as in developing endodermal organs such as the stomach,duodenum,liver,and pancreas.Ectopic expression of atf4 in the animal hemisphere of Xenopus embryos had no obvious effects on the induction of neural progenitors,but suppressed neurogenesis and eye formation without promoting apoptosis.Our data suggest that tightly controlled atf4 activities may be crucial for normal neurogenesis and early eye patterning.
文摘The cellular neural/nonlinear network (CNN) is a powerful tool for image and video signal processing,robotic and biological visions. This paper discusses a general method for designing template of the global connectivitydetection (GCD) CNN, which provides parameter inequalities for determining parameter intervals for implementing thecorresponding functions. The GCD CNN has stronger ability and faster rate for determining global connectivity in binarypatterns than the GCD CNN proposed by Zarandy. An example for detecting the connectivity in complex patterns isgiven.
基金Supported by the NSF of Zhejiang Province(M103087) Supported by the Science Research Fund of Hushou Teacher's College
文摘This paper describes the problem of stability for one-dimensional Cellular Neural Networks(CNNs). A sufficient condition is presented to ensure complete stability for a class of special CNN's with nonsymmetric templates, where the parameter in the output function is greater than or equal to zero. The main method is analysising the property of the equilibrium point of the CNNs system.
基金supported by National Natural Science Foundation of China (81530042, 31571529, 31210103905, 31571519, 31571390, 31371510, 31301208, 31471250, 31401257)the Ministry of Science and Technology (2012CB966603, 2013CB967600, 2013CB967401)+2 种基金Science and Technology Commission of Shanghai Municipality (15JC1403200, 15JC1403201)Shanghai Rising-Star Program (14QA1403900)the Fundamental Research Funds for the Central Universities (2000219099)
文摘In vitro, mouse embryonic stem (ES) cells can differentiate into many somatic cell types, including neurons and glial cells. When cultured in serum-free medium, ES cells convert spontaneously and efficiently to a neural fate. Previous studies have shown that the neural conversion of mouse ES cells includes both the participation of neural-specific transcription factors and the regulation of epigenetic modifications. However, the intracellular mechanism underlying this intrinsic transition still re- mains to be further elucidated. Herein, we describe a long intergenic non-coding RNA, LincRNA1230, which participates in the regulation of the neural lineage specification of mouse ES cells. The ectopic forced expression of LincRNAI230 dramatically inhibited mouse ES cells from adopting a neural cell fate, while LincRNA1230 knockdown promoted the conversion of mouse ES cells towards neural progenitors. Mechanistic studies have shown that LincRNA1230 inhibits the activation of early neural genes, such as Pax6 and Soxl, through the modulation of bivalent modifications (tri-methylation of histone3 lysine4 and his- tone3 lysine27) at the promoters of these genes. The interaction of LincRNA1230 with Wdr5 blocked the localization of Wdr5 at the promoters of early neural genes, thereby inhibiting the enrichment of H3K4me3 modifications at these loci. Collectively, these findings revealed a crucial role for LincRNA1230 in the regulation of the neural differentiation of mouse ES cells.