期刊文献+
共找到126篇文章
< 1 2 7 >
每页显示 20 50 100
非稀疏多核组合的支持向量回归方法 被引量:2
1
作者 胡庆辉 丁立新 +1 位作者 刘晓刚 李照奎 《四川大学学报(工程科学版)》 EI CAS CSCD 北大核心 2015年第4期91-97,共7页
为了改善支持向量回归机的性能,提出一种利用多核学习解决回归问题的算法(NS-MKR)。算法对基本核函数的组合系数施加了Lp范数的约束(p>1),以得到组合系数的非稀疏解,并采用了两步优化方法,首先求解基于加权组合核的标准支持向量回归... 为了改善支持向量回归机的性能,提出一种利用多核学习解决回归问题的算法(NS-MKR)。算法对基本核函数的组合系数施加了Lp范数的约束(p>1),以得到组合系数的非稀疏解,并采用了两步优化方法,首先求解基于加权组合核的标准支持向量回归问题,用于学习拉格朗日乘子,然后采用简单的计算,求得基本核函数的组合系数,这2个步骤交替进行,直到满足事先定义的收敛准则。在人工数据集和真实数据集上的实验表明,相对于传统的单核和稀疏多核支持向量回归方法,提出的算法有更好的泛化性能。 展开更多
关键词 多核学习 支持向量回归 非稀疏核组合 两步优化
下载PDF
基于Boosting框架的非稀疏多核学习方法 被引量:2
2
作者 胡庆辉 李志远 《计算机应用研究》 CSCD 北大核心 2016年第11期3219-3222,3227,共5页
针对传统的分类器集成的每次迭代通常是将单个最优个体分类器集成到强分类器中,而其他可能有辅助作用的个体分类器被简单抛弃的问题,提出了一种基于Boosting框架的非稀疏多核学习方法 MKL-Boost。利用分类器集成学习的思想,每次迭代时,... 针对传统的分类器集成的每次迭代通常是将单个最优个体分类器集成到强分类器中,而其他可能有辅助作用的个体分类器被简单抛弃的问题,提出了一种基于Boosting框架的非稀疏多核学习方法 MKL-Boost。利用分类器集成学习的思想,每次迭代时,首先从训练集中选取一个训练子集,然后利用正则化非稀疏多核学习方法训练最优个体分类器,求得的个体分类器考虑了M个基本核的最优非稀疏线性凸组合,通过对核组合系数施加LP范数约束,一些好的核得以保留,从而保留了更多的有用特征信息,差的核将会被去掉,保证了有选择性的核融合,再将基于核组合的最优个体分类器集成到强分类器中。提出的算法既具有Boosting集成学习的优点,同时具有正则化非稀疏多核学习的优点,实验表明,相对于其他Boosting算法,MKL-Boost可以在较少的迭代次数内获得较高的分类精度。 展开更多
关键词 集成学习 非稀疏多核学习 弱分类器 基本核
下载PDF
非稀疏欠定盲分离及其在语音分离中的应用 被引量:1
3
作者 陈永强 王宏霞 《铁道学报》 EI CAS CSCD 北大核心 2012年第4期69-75,共7页
本文提出一种基于马尔科夫链蒙特卡洛方法(MCMC)的贝叶斯非稀疏盲源分离算法。用广义高斯分布(GGD)来拟合源信号的分布,通过MCMC抽样得到GGD参数和隐变量的估计,并由此得到源信号的最小均方误差估计(MMSE),解决了GGD参数估计容易陷入局... 本文提出一种基于马尔科夫链蒙特卡洛方法(MCMC)的贝叶斯非稀疏盲源分离算法。用广义高斯分布(GGD)来拟合源信号的分布,通过MCMC抽样得到GGD参数和隐变量的估计,并由此得到源信号的最小均方误差估计(MMSE),解决了GGD参数估计容易陷入局部极值点、鲁棒性差的问题。根据语音信号的局部平稳性,提出基于非稀疏度评判准则的盲分离算法,用MCMC方法分离非稀疏区的语音信号,进一步提高了语音信号分离精度。仿真实验证明,本文方法改善了非稀疏信号和语音信号的分离效果,而且具有更好的鲁棒性。 展开更多
关键词 马尔科夫链蒙特卡洛方法 欠定盲分离 贝叶斯方法 非稀疏度评判准则
下载PDF
非稀疏液滴群内单液滴的多段自着火现象数值模拟分析
4
作者 周恒毅 刘有晟 《燃烧科学与技术》 EI CAS CSCD 北大核心 2021年第3期223-232,共10页
使用一维元胞模型对处于低温氧化反应温度区间(600~800 K)的非稀疏正庚烷液滴群中单个液滴的多段自着火现象进行数值模拟,区分了蒸发饱和模式、多段自着火模式.前者液滴蒸发速度逐渐减小趋于停滞,液滴群只可能外部着火;后者元胞内部出... 使用一维元胞模型对处于低温氧化反应温度区间(600~800 K)的非稀疏正庚烷液滴群中单个液滴的多段自着火现象进行数值模拟,区分了蒸发饱和模式、多段自着火模式.前者液滴蒸发速度逐渐减小趋于停滞,液滴群只可能外部着火;后者元胞内部出现两段着火和扩散熄火,对应液滴群内部着火现象.分别测试了液滴初始粒径和元胞内初始温度对两种模式转变的影响,初始粒径的增大促进了自着火;初始温度会影响反应活性从而决定所处模式. 展开更多
关键词 非稀疏液滴群 自着火 冷火焰 正庚烷
下载PDF
基于非负稀疏编码的位置细胞反馈环路学习模型
5
作者 任梦辉 王东署 《郑州大学学报(理学版)》 CAS 北大核心 2025年第1期31-39,共9页
为了探究大脑导航编码的神经机制,聚焦内嗅皮层与海马体之间的神经连接进行模型研究。生理学证据显示,内嗅皮层与海马体之间存在显著的反馈回路连接,两者的空间编码细胞在导航行为中表现出高度关联性。基于这一基础,建立了反馈循环网络... 为了探究大脑导航编码的神经机制,聚焦内嗅皮层与海马体之间的神经连接进行模型研究。生理学证据显示,内嗅皮层与海马体之间存在显著的反馈回路连接,两者的空间编码细胞在导航行为中表现出高度关联性。基于这一基础,建立了反馈循环网络模型,将内嗅皮层的栅格细胞与弱空间细胞作为网络输入,连接到海马体的位置细胞与颗粒细胞,并采用非负稀疏编码进行学习。实验结果表明:该反馈学习模型可以快速捕获细胞的空间调谐特性,仅使用弱空间细胞作为输入,也可以通过反馈环路学习到海马位置细胞对空间的单峰选择性,说明反馈编码机制在优化空间表示中发挥着关键作用。总之,该模型可能是大脑导航系统生成精确空间编码的重要细胞机制之一。 展开更多
关键词 内嗅皮层 海马体 栅格细胞 位置细胞 反馈循环 稀疏编码
下载PDF
非负组稀疏约束优化问题的最优性条件
6
作者 胡珊珊 贺素香 《数学物理学报(A辑)》 CSCD 北大核心 2024年第2期500-512,共13页
基于Bouligand意义下的切锥与法锥和Clarke意义下的切锥与法锥,该文研究了非负组稀疏约束优化问题的最优性理论.该文定义了非负组稀疏约束集的Bouligand切锥与法锥和Clarke切锥与法锥,并给出了它们的等价刻画形式.在目标函数连续可微的... 基于Bouligand意义下的切锥与法锥和Clarke意义下的切锥与法锥,该文研究了非负组稀疏约束优化问题的最优性理论.该文定义了非负组稀疏约束集的Bouligand切锥与法锥和Clarke切锥与法锥,并给出了它们的等价刻画形式.在目标函数连续可微的条件下,借助于非负组稀疏约束集的切锥和法锥,给出了该优化问题的四类稳定点的定义,并讨论了它们之间的关系.最后,建立了非负组稀疏约束优化问题的一阶和二阶最优性条件. 展开更多
关键词 负组稀疏约束优化问题 最优性条件 切锥 法锥
下载PDF
加窗截取改善信号非稀疏表达的稀疏性 被引量:1
7
作者 杨初平 蔡汶曦 翁嘉文 《激光与光电子学进展》 CSCD 北大核心 2015年第3期134-140,共7页
为了把压缩传感技术应用到变换域非稀疏信号中,提出了一种能够改善信号非稀疏表达稀疏性的新方法。该方法采用可移动窗口函数把信号在变换域中的非稀疏表达截取成多个窗截表达,只要控制每个窗口函数宽度远小于信号的长度,则每个窗截表... 为了把压缩传感技术应用到变换域非稀疏信号中,提出了一种能够改善信号非稀疏表达稀疏性的新方法。该方法采用可移动窗口函数把信号在变换域中的非稀疏表达截取成多个窗截表达,只要控制每个窗口函数宽度远小于信号的长度,则每个窗截表达具有较好的稀疏性。通过稀疏的窗截表达实现对非稀疏表达的压缩传感。结合高斯和矩形窗口函数给出了详细的理论分析,无噪和加噪信号的实验结果证明了该方法的有效性。 展开更多
关键词 图像处理 压缩传感 非稀疏表达 窗截表达 稀疏 信号重建
原文传递
基于非负稀疏表示的SAR图像目标识别方法 被引量:11
8
作者 丁军 刘宏伟 王英华 《电子与信息学报》 EI CSCD 北大核心 2014年第9期2194-2200,共7页
针对合成孔径雷达(SAR)图像目标识别中存在物体遮挡的情况,该文提出一种基于非负稀疏表示的分类方法。通过分析L0范数和L1范数最小化在求解非负稀疏表示问题上的区别,证明在一定条件下,L1范数最小化方法除了保持解的稀疏性还能得到与输... 针对合成孔径雷达(SAR)图像目标识别中存在物体遮挡的情况,该文提出一种基于非负稀疏表示的分类方法。通过分析L0范数和L1范数最小化在求解非负稀疏表示问题上的区别,证明在一定条件下,L1范数最小化方法除了保持解的稀疏性还能得到与输入信号更加相似的原子集合,因此也更加适用于分类问题中。在运动和静止目标获取与识别(MSTAR)数据集上的识别实验结果表明,采用L1范数的非负稀疏表示分类方法能达到较好的识别性能,并且相对传统方法对存在遮挡情况下的识别问题更稳健。 展开更多
关键词 SAR目标识别 稀疏表示 L1范数最小化
下载PDF
基于非负稀疏图的高光谱数据降维 被引量:7
9
作者 高阳 王雪松 程玉虎 《电子与信息学报》 EI CSCD 北大核心 2013年第5期1177-1184,共8页
为减少因大量的光谱信息带来的计算复杂及数据冗余带来的高光谱数据分类性能降低,该文提出一种非负稀疏图降维算法。首先,构建超完备块字典对高维高光谱数据进行非负稀疏表示。然后,根据块非负稀疏表示,分别构建内部非负稀疏图和惩罚非... 为减少因大量的光谱信息带来的计算复杂及数据冗余带来的高光谱数据分类性能降低,该文提出一种非负稀疏图降维算法。首先,构建超完备块字典对高维高光谱数据进行非负稀疏表示。然后,根据块非负稀疏表示,分别构建内部非负稀疏图和惩罚非负稀疏图,基于单调递减函数定义边的权重以体现样本间的相似程度。最后,通过同时最大化异类和最小化同类非负稀疏重构样本间的距离,得到从高维到低维的最优映射关系,从而实现对高维高光谱数据的降维。AVIRIS 92AV3C高光谱数据上的实验结果表明,所提算法能以较少的训练样本获得较高的整体分类精度和Kappa系数。 展开更多
关键词 高光谱 降维 稀疏 整体分类精度 Kappa系数
下载PDF
基于随机矩阵的高光谱影像非负稀疏表达分类 被引量:4
10
作者 孙伟伟 刘春 +1 位作者 施蓓琦 李巍岳 《同济大学学报(自然科学版)》 EI CAS CSCD 北大核心 2013年第8期1274-1280,共7页
考虑到常规的高光谱影像稀疏表达分类模型的不足,提出随机矩阵-非负稀疏表达分类模型来提高高光谱影像的分类精度.通过引入随机矩阵来改善传统稀疏表达分类模型中测量矩阵以更好满足限制等距特性条件,同时限定系数向量的非负性以提高重... 考虑到常规的高光谱影像稀疏表达分类模型的不足,提出随机矩阵-非负稀疏表达分类模型来提高高光谱影像的分类精度.通过引入随机矩阵来改善传统稀疏表达分类模型中测量矩阵以更好满足限制等距特性条件,同时限定系数向量的非负性以提高重构系数的可解释性.基于两个不同的高光谱数据集,对随机矩阵-非负稀疏表达分类模型采用三种方法进行系数重构,并对比常规稀疏表达分类模型的分类结果.实验证明,所提的模型能够明显提高常规稀疏表达分类模型的分类结果.同时,随机矩阵的投影维数对分类精度的影响研究实验表明,较大的投影维数能够保证该模型用以提高高光谱影像的分类精度. 展开更多
关键词 高光谱影像分类 稀疏表达 随机矩阵 压缩感知
下载PDF
轮廓波和非负稀疏编码收缩的毫米波图像恢复 被引量:6
11
作者 尚丽 苏品刚 周昌雄 《激光与红外》 CAS CSCD 北大核心 2011年第9期1049-1053,共5页
针对毫米波图像存在的分辨率较低的问题,结合局部非负稀疏编码(non-negativesparse coding,NNSC)算法的自适应高阶统计特性以及轮廓波分解的方向性和能量变化特性,提出了一种新的基于轮廓波和NNSC收缩的毫米波图像恢复方法。NNSC算法是... 针对毫米波图像存在的分辨率较低的问题,结合局部非负稀疏编码(non-negativesparse coding,NNSC)算法的自适应高阶统计特性以及轮廓波分解的方向性和能量变化特性,提出了一种新的基于轮廓波和NNSC收缩的毫米波图像恢复方法。NNSC算法是近年来发展起来的模拟人类视觉系统信息处理的有效方法。使用NNSC训练得到的特征基向量和最大似然估计(MLE),能够自适应地确定收缩去噪阈值,并把该收缩技术应用到轮廓波变换域,则能够大大减少毫米波图像中的大量未知噪声,提高毫米波图像的恢复质量。采用无噪自然图像验证基于轮廓波和NNSC收缩的图像恢复方法,实验结果证实了所提出的算法的有效性和实用性,表明该方法能够有效地用于低分辨率图像的恢复。 展开更多
关键词 稀疏编码 轮廓波变换 阈值收缩 特征基向量 图像恢复
下载PDF
基于图像导数框架和非负稀疏编码的颜色恒常计算方法 被引量:3
12
作者 杜馨瑜 李永杰 +1 位作者 尧德中 李朝义 《电子学报》 EI CAS CSCD 北大核心 2012年第1期179-183,共5页
本文通过模拟初级视皮层神经元感受野在视觉信息处理中的功能,提出了一种基于图像导数框架和非负稀疏编码思想的颜色恒常性计算模型,以实现对色偏图像的颜色矫正.从解决工程问题的角度,本文提出的基于生理机制的计算模型在处理效果上可... 本文通过模拟初级视皮层神经元感受野在视觉信息处理中的功能,提出了一种基于图像导数框架和非负稀疏编码思想的颜色恒常性计算模型,以实现对色偏图像的颜色矫正.从解决工程问题的角度,本文提出的基于生理机制的计算模型在处理效果上可与目前最好的颜色恒常性算法相媲美;从计算神经科学的角度,本文模型支持了大脑初级视皮层在视觉颜色恒常性中扮演重要角色的观点. 展开更多
关键词 颜色恒常 导数框架 稀疏编码 初级视皮层 感受野
下载PDF
非均匀稀疏采样环境自适应α-β滤波算法 被引量:5
13
作者 李良群 谢维信 +1 位作者 黄敬雄 廖桂生 《系统仿真学报》 CAS CSCD 北大核心 2009年第16期5138-5140,共3页
针对非均匀稀疏采样环境下的被动机动目标跟踪问题,提出了一种新的自适应α-β滤波算法。算法首先在最小均方误差准则下,推导了α-β滤波器的最优参数选择方法;然后详细分析了非均匀稀疏采样被动传感器上报数据的特点,提出利用上报时间... 针对非均匀稀疏采样环境下的被动机动目标跟踪问题,提出了一种新的自适应α-β滤波算法。算法首先在最小均方误差准则下,推导了α-β滤波器的最优参数选择方法;然后详细分析了非均匀稀疏采样被动传感器上报数据的特点,提出利用上报时间间隔和目标速度来设计跟踪指数,且根据被动传感器系统的实际观测情况,推导了观测误差标准差的表达式;最后,在保证算法稳定性的前提下,给出了自适应滤波器参数设计方法。实验结果表明,提出算法能够准确对机动目标进行跟踪,性能要好于工程中常用的α-β滤波器,且算法设计简单,能够工程实现。 展开更多
关键词 均匀稀疏采样 被动传感器系统 自适应Α-Β滤波 机动目标跟踪
下载PDF
基于非局部稀疏编码的超分辨率图像复原 被引量:7
14
作者 刘哲 杨静 陈路 《电子与信息学报》 EI CSCD 北大核心 2015年第3期522-528,共7页
基于压缩感知的超分辨率图像复原方法通常采用局部稀疏编码策略,对每一图像块独立编码,易产生人工的分块效应。针对上述问题,该文提出一种基于非局部稀疏编码的超分辨率图像复原方法。该算法在字典训练和图像编码过程中分别运用图像的... 基于压缩感知的超分辨率图像复原方法通常采用局部稀疏编码策略,对每一图像块独立编码,易产生人工的分块效应。针对上述问题,该文提出一种基于非局部稀疏编码的超分辨率图像复原方法。该算法在字典训练和图像编码过程中分别运用图像的非局部自相似先验知识,即利用低分辨率图像的插值图像训练字典,并通过计算相似块局部编码的加权平均,得到每一图像块的非局部稀疏编码。仿真实验表明,所提算法能够获得更优的复原效果,并且对于含噪图像具有较强的鲁棒性。 展开更多
关键词 超分辨率图像复原 压缩感知 局部自相似 局部稀疏编码 单字典训练
下载PDF
非负谱稀疏表示的高光谱成像中的异常检测 被引量:2
15
作者 韦道知 黄树彩 +1 位作者 赵岩 庞策 《红外与激光工程》 EI CSCD 北大核心 2016年第A02期120-125,536,共6页
针对高光谱异常检测提出了一种新型的非负稀疏表示(NSR)模型。其核心思想是背景像素可以近似地表示为其周围邻域的稀疏线性组合,而异常像素不能。算法中稀疏向量的非负性和一对一约束具有物理意义以及更好的辨别能力。为了排除在背景字... 针对高光谱异常检测提出了一种新型的非负稀疏表示(NSR)模型。其核心思想是背景像素可以近似地表示为其周围邻域的稀疏线性组合,而异常像素不能。算法中稀疏向量的非负性和一对一约束具有物理意义以及更好的辨别能力。为了排除在背景字典中呈现的潜在异常像素,修剪与中心像素类似的原子,然后通过非负正交匹配追踪(NOMP)算法求解NSR模型,并将重建误差直接用于确定异常像素。最后,通过实际的高光谱数据集的实验结果与现有的算法进行比较,证明了所提出的算法的有效性。 展开更多
关键词 异常检测 稀疏表示 协作表示 高光谱图像
下载PDF
基于稀疏非负最小二乘编码的高光谱遥感数据分类方法 被引量:6
16
作者 齐永锋 杨乐 火元莲 《农业机械学报》 EI CAS CSCD 北大核心 2016年第7期332-337,共6页
为了提高高光谱遥感影像的分类精度,提出了一种基于稀疏非负最小二乘编码的高光谱数据分类方法。采用非负最小二乘方法,将待测样本表示为训练样本的线性组合,并将得到的系数作为待测样本的特征向量,通过最小误差方法对待测样本进行分类... 为了提高高光谱遥感影像的分类精度,提出了一种基于稀疏非负最小二乘编码的高光谱数据分类方法。采用非负最小二乘方法,将待测样本表示为训练样本的线性组合,并将得到的系数作为待测样本的特征向量,通过最小误差方法对待测样本进行分类。提出的方法在AVIRIS Indian Pines和萨利纳斯山谷高光谱遥感数据集上进行分类实验,并和主成分分析(PCA)、支持向量机(SVM)和基于稀疏表示分类器(SRC)方法进行比较,在2个数据集上本文方法的总体识别精度分别达到85.31%和99.56%,Kappa系数分别为0.816 3和0.986 7。实验结果表明本文方法的总体识别精度和Kappa系数都优于另外3种方法,是一种较好的高光谱遥感数据分类方法。 展开更多
关键词 稀疏负最小二乘 高光谱遥感 数据分类
下载PDF
非负稀疏编码收缩法的自然图像消噪 被引量:4
17
作者 尚丽 黄德双 郑春厚 《中国科学技术大学学报》 CAS CSCD 北大核心 2006年第5期497-501,共5页
非负稀疏编码(NNSC)算法仅依赖自然图像数据的统计特性,具有自适应性.利用NNSC算法可以成功地提取自然图像的特征基向量;作为对特征基的一个实际应用,提出了一种新颖的用非负稀疏编码收缩技术消除自然图像中的高斯加性噪声的方法.实验表... 非负稀疏编码(NNSC)算法仅依赖自然图像数据的统计特性,具有自适应性.利用NNSC算法可以成功地提取自然图像的特征基向量;作为对特征基的一个实际应用,提出了一种新颖的用非负稀疏编码收缩技术消除自然图像中的高斯加性噪声的方法.实验表明,提取的特征基向量在时域和频域上都有方向性和局部性,表现了输入自然图像的边缘特性;而且与独立分量分析(ICA)法相比,NNSC法提取的特征基有更清晰的边缘特征.目视效果和归一化信噪比证明了NNSC收缩法的消噪效果要优于稀疏编码(或ICA)收缩法、小波收缩法和Wiener滤波等方法. 展开更多
关键词 稀疏编码 稀疏编码 独立分量分析 特征基向量 图像特征提取 图像消噪
下载PDF
基于稀疏非负矩阵分解和支持向量机的海洋溢油近红外光谱鉴别分析 被引量:9
18
作者 谈爱玲 毕卫红 赵勇 《光谱学与光谱分析》 SCIE EI CAS CSCD 北大核心 2011年第5期1250-1253,共4页
提出一种海洋溢油近红外光谱特征提取与种类鉴别新方法。海面溢油种类鉴别对现场应急处置方案的制定和可疑溢油源的追踪具有重要意义。采用傅里叶变换近红外光谱仪测定汽油、柴油、煤油三类模拟海洋溢油样本的近红外光谱,基于稀疏非负... 提出一种海洋溢油近红外光谱特征提取与种类鉴别新方法。海面溢油种类鉴别对现场应急处置方案的制定和可疑溢油源的追踪具有重要意义。采用傅里叶变换近红外光谱仪测定汽油、柴油、煤油三类模拟海洋溢油样本的近红外光谱,基于稀疏非负矩阵分解算法对光谱进行特征提取,采用五重交叉检验,对210个样本进行训练,建立基于支持向量机的溢油光谱定性分析模型,同时讨论非负特征基数目以及稀疏因子对分类正确率的影响;利用训练好的分类器对90个未知样本进行鉴别,识别正确率达97.78%。所提出的稀疏非负矩阵分解结合支持向量机的近红外光谱定性分析方法,识别正确率高,模型泛化能力强,具有很好的分类效果,为海洋溢油的快速鉴别提供了新途径。 展开更多
关键词 近红外光谱 海洋溢油 稀疏负矩阵分解 支持向量机
下载PDF
基于格理论的非均匀稀疏线阵旁瓣结构的分析方法 被引量:2
19
作者 侯青松 郭英 +1 位作者 王布宏 王永良 《电子学报》 EI CAS CSCD 北大核心 2010年第6期1459-1463,共5页
在有限个阵元的情况下,非均匀稀疏线阵能得到更大的阵列孔径.但由于其是对空间信号的非均匀采样,不能通过常规的傅立叶变换方法求得其峰值旁瓣解析表达式.本文提出了一种基于格理论的非均匀稀疏线阵的旁瓣结构分析方法.首先建立了阵列... 在有限个阵元的情况下,非均匀稀疏线阵能得到更大的阵列孔径.但由于其是对空间信号的非均匀采样,不能通过常规的傅立叶变换方法求得其峰值旁瓣解析表达式.本文提出了一种基于格理论的非均匀稀疏线阵的旁瓣结构分析方法.首先建立了阵列流形格的数学模型并对其物理含义进行了仿真分析,然后推导了阵列流形格最近格点与峰值旁瓣的对应关系,从而将非均匀稀疏线阵峰值旁瓣结构分析问题转化为求距阵列流形格原点最近格点问题.该方法可以准确地确定非均匀稀疏线阵旁瓣中增益大于门限电平的旁瓣个数及其各自的方位.计算机仿真结果表明了该方法的有效性和准确性. 展开更多
关键词 均匀稀疏线阵 格理论 峰值旁瓣结构
下载PDF
基于局部特征的非负稀疏编码神经网络模型 被引量:2
20
作者 尚丽 崔鸣 +1 位作者 赵志强 杜吉祥 《计算机工程》 CAS CSCD 北大核心 2011年第16期200-201,205,共3页
在非负稀疏编码(NNSC)的基础上,考虑特征基向量的稀疏度约束和特征基的局部性,提出一种基于局部特征的NNSC神经网络模型。该模型利用梯度和倍增因子相结合的优化算法实现特征系数的学习;利用倍增算法实现特征基的学习。对掌纹图像进行... 在非负稀疏编码(NNSC)的基础上,考虑特征基向量的稀疏度约束和特征基的局部性,提出一种基于局部特征的NNSC神经网络模型。该模型利用梯度和倍增因子相结合的优化算法实现特征系数的学习;利用倍增算法实现特征基的学习。对掌纹图像进行特征提取测试,结果表明,与传统NNSC模型和局部非负矩阵分解(LNMF)方法相比,该模型能有效提取图像的局部特征,收敛速度较快,可模拟初级视觉系统处理自然界信息的稀疏编码策略。 展开更多
关键词 稀疏编码 初级视觉系统 稀疏度约束 局部特征 特征提取 特征基向量
下载PDF
上一页 1 2 7 下一页 到第
使用帮助 返回顶部