We give the generalized definitions of variable separable solutions to nonlinear evolution equations, and characterize the relation between the functional separable solution and the derivative-dependent functional sep...We give the generalized definitions of variable separable solutions to nonlinear evolution equations, and characterize the relation between the functional separable solution and the derivative-dependent functional separable solution. The new definitions can unify various kinds of variable separable solutions appearing in references. As application, we classify the generalized nonlinear diffusion equations that admit special functional separable solutions and obtain some exact solutions to the resulting equations.展开更多
In this paper, we propose a new variation of the Adomian polynomials, which we call the degenerate Adomian polynomials, for the power series solutions of nonlinear ordinary differential equations with nonseparable non...In this paper, we propose a new variation of the Adomian polynomials, which we call the degenerate Adomian polynomials, for the power series solutions of nonlinear ordinary differential equations with nonseparable nonlinearities. We establish efficient algorithms for the degenerate Adomian polynomials. Next we compare the results by the Adomian decomposition method using the classic Adomian polynomials with the results by the Rach-Adomian-Meyers modified decomposition method incorporating the degenerate Adomian polynomials, which itself has been shown to be a confluence of the Adomian decomposition method and the power series method. Convergence acceleration techniques including the diagonal Pade approximants are considered, and new numeric algorithms for the multistage decomposition are deduced using the degenerate Adomian polynomials. Our new technique provides a significant advantage for automated calculations when computing the power series form of the solution for nonlinear ordinary differential equations. Several expository examples are investigated to demonstrate its reliability and efficiency.展开更多
A new general algebraic method is presented to uniformly construct a series of exact solutions for nonlinear evolution equations (NLEEs). For illustration, we apply the new method to shallow long wave approximate eq...A new general algebraic method is presented to uniformly construct a series of exact solutions for nonlinear evolution equations (NLEEs). For illustration, we apply the new method to shallow long wave approximate equations and successfully obtain abundant new exact solutions, which include rational solitary wave solutions and rational triangular periodic wave solutions. The method is straightforward and concise, and it can also be applied to other nonlinear evolution equations in mathematical physics.展开更多
This paper is based on the relations between projection Riccati equations and Weierstrass elliptic equation, combined with the Groebner bases in the symbolic computation.Then the novel method for constructing the Weie...This paper is based on the relations between projection Riccati equations and Weierstrass elliptic equation, combined with the Groebner bases in the symbolic computation.Then the novel method for constructing the Weierstrass elliptic solutions to the nonlinear evolution equations is given by using the above relations.展开更多
1 INTRODUCTIONThe concentration distribution of reactant in porouscatalyst pellet not only is the basis of calculating theeffectiveness factor,but also has a great significancein investigating the reaction and mass tr...1 INTRODUCTIONThe concentration distribution of reactant in porouscatalyst pellet not only is the basis of calculating theeffectiveness factor,but also has a great significancein investigating the reaction and mass transfer in thecatalyst pellet.In principle,the concentration distri-bution and the effectiveness factor of a catalyst pelletcan be obtained by solving the reaction-diffusion equation.However,most of the differential equations haveno analytical solution except for some simple cases.The previous investigators have made great efforts to calculate the effectiveness factors of catalysts.They first obtained asymptotic solutions of effective-ness factor in the cases of the Thiele modulus φ→Oand φ→oo by means of perturbation method,thensynthesized the information of the asymptotic solu-展开更多
Linear dispersion relation for linear wave and a Kadomtsev-Petviashvili (KP) equation for nonlinearwave are given for the unmagnetized two-ion-temperature cold dusty plasma with many different dust grain species.The n...Linear dispersion relation for linear wave and a Kadomtsev-Petviashvili (KP) equation for nonlinearwave are given for the unmagnetized two-ion-temperature cold dusty plasma with many different dust grain species.The numerical results of variations of linear dispersion with respect to the different dust size distribution are given.Moreover,how the amplitude,width,and propagation velocity of solitary wave vary vs different dust size distribution isalso studied numerically in this paper.展开更多
基金The project supported by National Natural Science Foundation of China under Grant Nos.10447007 and 10671156the Natural Science Foundation of Shaanxi Province of China under Grant No.2005A13
文摘We give the generalized definitions of variable separable solutions to nonlinear evolution equations, and characterize the relation between the functional separable solution and the derivative-dependent functional separable solution. The new definitions can unify various kinds of variable separable solutions appearing in references. As application, we classify the generalized nonlinear diffusion equations that admit special functional separable solutions and obtain some exact solutions to the resulting equations.
文摘In this paper, we propose a new variation of the Adomian polynomials, which we call the degenerate Adomian polynomials, for the power series solutions of nonlinear ordinary differential equations with nonseparable nonlinearities. We establish efficient algorithms for the degenerate Adomian polynomials. Next we compare the results by the Adomian decomposition method using the classic Adomian polynomials with the results by the Rach-Adomian-Meyers modified decomposition method incorporating the degenerate Adomian polynomials, which itself has been shown to be a confluence of the Adomian decomposition method and the power series method. Convergence acceleration techniques including the diagonal Pade approximants are considered, and new numeric algorithms for the multistage decomposition are deduced using the degenerate Adomian polynomials. Our new technique provides a significant advantage for automated calculations when computing the power series form of the solution for nonlinear ordinary differential equations. Several expository examples are investigated to demonstrate its reliability and efficiency.
文摘A new general algebraic method is presented to uniformly construct a series of exact solutions for nonlinear evolution equations (NLEEs). For illustration, we apply the new method to shallow long wave approximate equations and successfully obtain abundant new exact solutions, which include rational solitary wave solutions and rational triangular periodic wave solutions. The method is straightforward and concise, and it can also be applied to other nonlinear evolution equations in mathematical physics.
基金supported by the Open Project of Key Laboratory of Mathematics Mechanization,CAS under Grant No.KLMM0602
文摘This paper is based on the relations between projection Riccati equations and Weierstrass elliptic equation, combined with the Groebner bases in the symbolic computation.Then the novel method for constructing the Weierstrass elliptic solutions to the nonlinear evolution equations is given by using the above relations.
基金Supported by the Natural Science Foundation of Fujian Province.
文摘1 INTRODUCTIONThe concentration distribution of reactant in porouscatalyst pellet not only is the basis of calculating theeffectiveness factor,but also has a great significancein investigating the reaction and mass transfer in thecatalyst pellet.In principle,the concentration distri-bution and the effectiveness factor of a catalyst pelletcan be obtained by solving the reaction-diffusion equation.However,most of the differential equations haveno analytical solution except for some simple cases.The previous investigators have made great efforts to calculate the effectiveness factors of catalysts.They first obtained asymptotic solutions of effective-ness factor in the cases of the Thiele modulus φ→Oand φ→oo by means of perturbation method,thensynthesized the information of the asymptotic solu-
基金Supported by the National Natural Science Foundation of China under Grant No.10875082the Natural Science Foundation of Gansu Province under Grant No.3ZS061-A25-013the Natural Science Foundation of Northwest Normal University under Grant No.NWNUKJCXGC-03-17,03-48
文摘Linear dispersion relation for linear wave and a Kadomtsev-Petviashvili (KP) equation for nonlinearwave are given for the unmagnetized two-ion-temperature cold dusty plasma with many different dust grain species.The numerical results of variations of linear dispersion with respect to the different dust size distribution are given.Moreover,how the amplitude,width,and propagation velocity of solitary wave vary vs different dust size distribution isalso studied numerically in this paper.