Small signal instability may cause severe accidents for power system if it can not be dear correctly and timely. How to maintain power system stable under small signal disturbance is a big challenge for power system o...Small signal instability may cause severe accidents for power system if it can not be dear correctly and timely. How to maintain power system stable under small signal disturbance is a big challenge for power system operators and dispatchers. Time delay existing in signal transmission process makes the problem more complex. Conventional eigenvalue analysis method neglects time delay influence and can not precisely describe power system dynamic behaviors. In this work, a modified small signal stability model considering time varying delay influence was constructed and a new time delay controller was proposed to stabilize power system under disturbance. By Lyapunov-Krasovskii function, the control law in the form of nonlinear matrix inequality (NLMI) was derived. Considering synthesis method limitation for time delay controller at present, both parameter adjustment method by using linear matrix inequality (LMI) solver and iteration searching method by solving nonlinear minimization problem were suggested to design the controller. Simulation tests were carried out on synchronous-machine infinite-bus power system. Satisfactory test results verify the correctness of the proposed model and the feasibility of the stabilization approach.展开更多
Actual slope stability problems have three-dimensional(3D) characteristics and the soils of slopes have curved failure envelopes. This incorporates a power-law nonlinear failure criterion into the kinematic approach o...Actual slope stability problems have three-dimensional(3D) characteristics and the soils of slopes have curved failure envelopes. This incorporates a power-law nonlinear failure criterion into the kinematic approach of limit analysis to conduct the evaluation of the stability of 3D slopes. A tangential technique is adopted to simplify the nonlinear failure criterion in the form of equivalent Mohr-Coulomb strength parameters. A class of 3D admissible rotational failure mechanisms is selected for soil slopes including three types of failure mechanisms: face failure, base failure, and toe failure. The upper-bound solutions and corresponding critical slip surfaces can be obtained by an efficient optimization method. The results indicate that the nonlinear parameters have significant influences on the assessment of slope stability, especially on the type of failure mechanism. The effects of nonlinear parameters appear to be pronounced for gentle slopes constrained to a narrow width. Compared with the solutions derived from plane-strain analysis, the 3D solutions are more sensitive to the values of nonlinear parameters.展开更多
The stability of natural slope was analyzed on the basis of limit analysis. The sliding model of a kind of natural slope was presented. A new kinematically admissible velocity field for the new sliding model was const...The stability of natural slope was analyzed on the basis of limit analysis. The sliding model of a kind of natural slope was presented. A new kinematically admissible velocity field for the new sliding model was constructed. The stability factor formulation by the upper bound theorem leads to a classical nonlinear programming problem, when the external work rate and internal energy dissipation were solved, and the constraint condition of the programming problem was given. The upper bound optimization problem can be solved efficiently by applying a nonlinear SQP algorithm, and stability factor was obtained, which agrees well with previous achievements.展开更多
We consider the Cauchy problem for nonlinear Schrdinger equation iut + Δu = ±|u|pu,4/d< p <4 /d-2 in high dimensions d 6. We prove the stability of solutions in the critical space H˙xsp , where sp = d/2-p...We consider the Cauchy problem for nonlinear Schrdinger equation iut + Δu = ±|u|pu,4/d< p <4 /d-2 in high dimensions d 6. We prove the stability of solutions in the critical space H˙xsp , where sp = d/2-p/2 .展开更多
This study is concerned with the stabilization issue of nonlinear systems subject to parameter uncertainties. An interval type-2 T-S fuzzy model is used to represent the nonlinear systems subject to parameter uncertai...This study is concerned with the stabilization issue of nonlinear systems subject to parameter uncertainties. An interval type-2 T-S fuzzy model is used to represent the nonlinear systems subject to parameter uncertainties. An interval type-2 fuzzy static output feedback controller is designed to synthesize the interval type-2 T-S fuzzy systems. The membership-function-dependent stability conditions are derived by utilizing the information of upper and lower membership functions. The proposed stability conditions are presented in the form of linear matrix inequalities(LMIs). LMI-based stability conditions for interval type-2 fuzzy static output feedback H_∞ control synthesis are also developed.Several simulation examples are given to show the superiority of the proposed approach.展开更多
This paper studies the stabilization problem of uniform Euler-Bernoulli beam with a nonlinear locally distributed feedback control. By virtue of nonlinear semigroup theory, energy-perturbed approach and polynomial mul...This paper studies the stabilization problem of uniform Euler-Bernoulli beam with a nonlinear locally distributed feedback control. By virtue of nonlinear semigroup theory, energy-perturbed approach and polynomial multiplier skill, the authors show that, corresponding to the different values of the parameters involved in the nonlinear locally distributed feedback control, the energy of the beam under the proposed feedback decays exponentially or in negative power of time t as t →∞.展开更多
A closed orientable Haken 3-manifold containing a non separating incompressible closed surface has two canonical Heegaard splittings, which are called self-amalgamation and bilateral self-amalgamation.Heegaard distanc...A closed orientable Haken 3-manifold containing a non separating incompressible closed surface has two canonical Heegaard splittings, which are called self-amalgamation and bilateral self-amalgamation.Heegaard distance introduced by Hempel is a useful index in studying Heegaard splitting. This paper studies the stabilization problem for the bilateral self-amalgamation, and proves that if the distance of bilateral selfamalgamation of a Heegaard splitting is at least 9, then it is unstabilized, weakly reducible and irreducible.展开更多
基金Project(51007042)supported by the National Natural Science Foundation of China
文摘Small signal instability may cause severe accidents for power system if it can not be dear correctly and timely. How to maintain power system stable under small signal disturbance is a big challenge for power system operators and dispatchers. Time delay existing in signal transmission process makes the problem more complex. Conventional eigenvalue analysis method neglects time delay influence and can not precisely describe power system dynamic behaviors. In this work, a modified small signal stability model considering time varying delay influence was constructed and a new time delay controller was proposed to stabilize power system under disturbance. By Lyapunov-Krasovskii function, the control law in the form of nonlinear matrix inequality (NLMI) was derived. Considering synthesis method limitation for time delay controller at present, both parameter adjustment method by using linear matrix inequality (LMI) solver and iteration searching method by solving nonlinear minimization problem were suggested to design the controller. Simulation tests were carried out on synchronous-machine infinite-bus power system. Satisfactory test results verify the correctness of the proposed model and the feasibility of the stabilization approach.
基金Project(201501035-03)supported by the Public Service Sector R&D Project of Ministry of Water Resource of ChinaProject(2015CB057901)supported by Basic Research Program of China+4 种基金Projects(51278382,51479050,51508160)supported by the National Natural Science Foundation of ChinaProject(B13024)supported by the 111 ProjectProjects(2014B06814,B15020060,2014B33414)supported by the Fundamental Research Funds for the Central Universities,ChinaProject(YK913004)supported by the Open Foundation of Key Laboratory of Failure Mechanism and Safety Control Techniques of Earth-rock Dam of the Ministry of Water Resources,ChinaProject(KYZZ_0143)supported by the Graduate Education Innovation Project of Jiangsu Province of China
文摘Actual slope stability problems have three-dimensional(3D) characteristics and the soils of slopes have curved failure envelopes. This incorporates a power-law nonlinear failure criterion into the kinematic approach of limit analysis to conduct the evaluation of the stability of 3D slopes. A tangential technique is adopted to simplify the nonlinear failure criterion in the form of equivalent Mohr-Coulomb strength parameters. A class of 3D admissible rotational failure mechanisms is selected for soil slopes including three types of failure mechanisms: face failure, base failure, and toe failure. The upper-bound solutions and corresponding critical slip surfaces can be obtained by an efficient optimization method. The results indicate that the nonlinear parameters have significant influences on the assessment of slope stability, especially on the type of failure mechanism. The effects of nonlinear parameters appear to be pronounced for gentle slopes constrained to a narrow width. Compared with the solutions derived from plane-strain analysis, the 3D solutions are more sensitive to the values of nonlinear parameters.
基金Project(2013CB036004)supported by the National Basic Research Program of ChinaProject(51178468)supported by the National Natural Science Foundation of China
文摘The stability of natural slope was analyzed on the basis of limit analysis. The sliding model of a kind of natural slope was presented. A new kinematically admissible velocity field for the new sliding model was constructed. The stability factor formulation by the upper bound theorem leads to a classical nonlinear programming problem, when the external work rate and internal energy dissipation were solved, and the constraint condition of the programming problem was given. The upper bound optimization problem can be solved efficiently by applying a nonlinear SQP algorithm, and stability factor was obtained, which agrees well with previous achievements.
基金supported by the start-up fund from University of Iowasupported by US National Science Foundation (Grant No. 0908032)
文摘We consider the Cauchy problem for nonlinear Schrdinger equation iut + Δu = ±|u|pu,4/d< p <4 /d-2 in high dimensions d 6. We prove the stability of solutions in the critical space H˙xsp , where sp = d/2-p/2 .
基金supported by the National Natural Science Foundation of China under Grant Nos.61134001,51477146the Applied Basic Research Program of Science and Technology Department of Sichuan Province,China under Grant No.2016JY0085
文摘This study is concerned with the stabilization issue of nonlinear systems subject to parameter uncertainties. An interval type-2 T-S fuzzy model is used to represent the nonlinear systems subject to parameter uncertainties. An interval type-2 fuzzy static output feedback controller is designed to synthesize the interval type-2 T-S fuzzy systems. The membership-function-dependent stability conditions are derived by utilizing the information of upper and lower membership functions. The proposed stability conditions are presented in the form of linear matrix inequalities(LMIs). LMI-based stability conditions for interval type-2 fuzzy static output feedback H_∞ control synthesis are also developed.Several simulation examples are given to show the superiority of the proposed approach.
基金This research is supported by the National Science Foundation of China under Grant Nos. 10671166 and 60673101.
文摘This paper studies the stabilization problem of uniform Euler-Bernoulli beam with a nonlinear locally distributed feedback control. By virtue of nonlinear semigroup theory, energy-perturbed approach and polynomial multiplier skill, the authors show that, corresponding to the different values of the parameters involved in the nonlinear locally distributed feedback control, the energy of the beam under the proposed feedback decays exponentially or in negative power of time t as t →∞.
基金supported by National Natural Science Foundation of China(Grant Nos.11271058 and 11371076)the Fundamental Research Funds for the Central Universities(Grant No.DUT14ZD208)
文摘A closed orientable Haken 3-manifold containing a non separating incompressible closed surface has two canonical Heegaard splittings, which are called self-amalgamation and bilateral self-amalgamation.Heegaard distance introduced by Hempel is a useful index in studying Heegaard splitting. This paper studies the stabilization problem for the bilateral self-amalgamation, and proves that if the distance of bilateral selfamalgamation of a Heegaard splitting is at least 9, then it is unstabilized, weakly reducible and irreducible.