In this paper, a coupled elliptic-parabolic system modeling a class of engineering problems with thermal effect is studied. Existence of a weak solution is first established through a result of Meyers' theorem and Sc...In this paper, a coupled elliptic-parabolic system modeling a class of engineering problems with thermal effect is studied. Existence of a weak solution is first established through a result of Meyers' theorem and Schauder fixed point theorem, where the coupled functions σ(s),k(s) are assumed to be bounded in the C(IR×(0, T)). If σ(s),k(s) are Lipschitz continuous we prove that solution is unique under some restriction on integrability of solution. The regularity of the solution in dimension n ≤ 2 is then analyzed under the assumptions on σ(s) ∈w^1,∞(Ω×(0, T)) and the boundedness of σ'(s) and σ″(s).展开更多
We investigate the multiplicity of positive steady state solutions to the unstirred chemostat model with general response functions. It turns out that all positive steady state solutions to this model lie on a single ...We investigate the multiplicity of positive steady state solutions to the unstirred chemostat model with general response functions. It turns out that all positive steady state solutions to this model lie on a single smooth solution curve, whose properties determine the multiplicity of positive steady state solutions. The key point of our analysis is to study the "turning points" on this positive steady state solution curve, and to prove that any nontrivial solution to the associated linearized problem is one of sign by constructing a suitable test function. The main tools used here include bifurcation theory, monotone method, mountain passing lemma and Sturm comnarison theorem.展开更多
Adaptive data analysis provides an important tool in extracting hidden physical information from multiscale data that arise from various applications. In this paper, we review two data-driven time-frequency analysis m...Adaptive data analysis provides an important tool in extracting hidden physical information from multiscale data that arise from various applications. In this paper, we review two data-driven time-frequency analysis methods that we introduced recently to study trend and instantaneous frequency of nonlinear and nonstationary data. These methods are inspired by the empirical mode decomposition method (EMD) and the recently developed compressed (compressive) sensing theory. The main idea is to look for the sparsest representation of multiscale data within the largest possible dictionary consisting of intrinsic mode functions of the form {a(t) cos(0(t))}, where a is assumed to be less oscillatory than cos(θ(t)) and θ '≥ 0. This problem can be formulated as a nonlinear ι0 optimization problem. We have proposed two methods to solve this nonlinear optimization problem. The first one is based on nonlinear basis pursuit and the second one is based on nonlinear matching pursuit. Convergence analysis has been carried out for the nonlinear matching pursuit method. Some numerical experiments are given to demonstrate the effectiveness of the proposed methods.展开更多
基金Foundation item: Supported by the National Natural Science Foundation of China(40537034)
文摘In this paper, a coupled elliptic-parabolic system modeling a class of engineering problems with thermal effect is studied. Existence of a weak solution is first established through a result of Meyers' theorem and Schauder fixed point theorem, where the coupled functions σ(s),k(s) are assumed to be bounded in the C(IR×(0, T)). If σ(s),k(s) are Lipschitz continuous we prove that solution is unique under some restriction on integrability of solution. The regularity of the solution in dimension n ≤ 2 is then analyzed under the assumptions on σ(s) ∈w^1,∞(Ω×(0, T)) and the boundedness of σ'(s) and σ″(s).
基金supported by National Natural Science Foundation of China(Grant Nos.11001160 and 11271236)Natural Science Foundation of Shaanxi Province(Grant No.2011JQ1015)the Fundamental Research Funds for the Central Universities(Grant Nos.GK201001002 and GK201002046)
文摘We investigate the multiplicity of positive steady state solutions to the unstirred chemostat model with general response functions. It turns out that all positive steady state solutions to this model lie on a single smooth solution curve, whose properties determine the multiplicity of positive steady state solutions. The key point of our analysis is to study the "turning points" on this positive steady state solution curve, and to prove that any nontrivial solution to the associated linearized problem is one of sign by constructing a suitable test function. The main tools used here include bifurcation theory, monotone method, mountain passing lemma and Sturm comnarison theorem.
基金supported by Air Force Ofce of Scientifc ResearchMultidisciplinary University Research Initiative+3 种基金USA(Grant No.FA9550-09-1-0613)Department of Energy of USA(Grant No.DE-FG02-06ER25727)Natural Science Foundation of USA(Grant No.DMS-0908546)National Natural Science Foundation of China(Grant No.11201257)
文摘Adaptive data analysis provides an important tool in extracting hidden physical information from multiscale data that arise from various applications. In this paper, we review two data-driven time-frequency analysis methods that we introduced recently to study trend and instantaneous frequency of nonlinear and nonstationary data. These methods are inspired by the empirical mode decomposition method (EMD) and the recently developed compressed (compressive) sensing theory. The main idea is to look for the sparsest representation of multiscale data within the largest possible dictionary consisting of intrinsic mode functions of the form {a(t) cos(0(t))}, where a is assumed to be less oscillatory than cos(θ(t)) and θ '≥ 0. This problem can be formulated as a nonlinear ι0 optimization problem. We have proposed two methods to solve this nonlinear optimization problem. The first one is based on nonlinear basis pursuit and the second one is based on nonlinear matching pursuit. Convergence analysis has been carried out for the nonlinear matching pursuit method. Some numerical experiments are given to demonstrate the effectiveness of the proposed methods.