In this paper,we prove existence results of soutions for the nonlinear implicit complementarity problems NICP(T,S,K) where K is a closed weakly locally compact convex cone in a reflexive Banach space E,T is a nonlinea...In this paper,we prove existence results of soutions for the nonlinear implicit complementarity problems NICP(T,S,K) where K is a closed weakly locally compact convex cone in a reflexive Banach space E,T is a nonlinear operator from K into E* (i. e.,the dual space of E) and S is a nonlinear operator from K into E. Our results are the essential improvements and extension of the results obtained previously by several authors including Thera,Ding,and Zeng.展开更多
We present the DKP oscillator model of spins 0 and 1, in a noncommutative space. In the case of spin 0, the equation is reduced to Klein Gordon oscillator type, the wave functions are then deduced and compared with th...We present the DKP oscillator model of spins 0 and 1, in a noncommutative space. In the case of spin 0, the equation is reduced to Klein Gordon oscillator type, the wave functions are then deduced and compared with the DKP spinless particle subjected to the interaction of a constant magnetic field. For the case of spin 1, the problem is equivalent with the behavior of the DKP equation of spin 1 in a commutative space describing the movement of a vectorial boson subjected to the action of a constant magnetic field with additional correction which depends on the noncommutativity parameter.展开更多
First a general model for a three-step projection method is introduced, and second it has been applied to the approximation solvability of a system of nonlinear variational inequality problems in a Hilbert space setti...First a general model for a three-step projection method is introduced, and second it has been applied to the approximation solvability of a system of nonlinear variational inequality problems in a Hilbert space setting. Let H be a real Hilbert space and K be a nonempty closed convex subset of H. For arbitrarily chosen initial points x0, y0, z0 ∈ K, compute sequences xn, yn, zn such thatT : K→ H is a nonlinear mapping onto K. At last three-step models are applied to some variational inequality problems.展开更多
This study was concerned with developing an antiretroviral drug distribution routing system with a goal of improving fleet utilization whilst reducing delivery costs. The system would enhance ARV drug delivery satisfa...This study was concerned with developing an antiretroviral drug distribution routing system with a goal of improving fleet utilization whilst reducing delivery costs. The system would enhance ARV drug delivery satisfaction of patients staying in the Limpopo province of South Africa. A VRP mathematical programming problem was formulated and the Savings Based as well as the Sequential Insertion algorithm was used to solve the problem. A mini program was then developed in Visual Basic.Net software that speeded up the vehicle route determination heuristics. This computer based vehicle routing system gave a total travelled distance of 1302.94 km and a space utilization of 93% as compared to the pigeonhole system which had a total travelled distance of 2874.2 km and space utilization of 86% for the demand of 5384 ARV drug patients. Therefore, the mathematical programming approach is more cost effective and efficient thereby enhancing delivery satisfaction to ARV drug patients in the province.展开更多
We utilize Park's maximal element theorem in H-space to prove the existence theorems of solutions of the complementarity problems for multivalued non-monotone operators in Banach spaces.
The linear conjugate gradient method is an optimal method for convex quadratic minimization due to the Krylov subspace minimization property. The proposition of limited-memory BFGS method and Barzilai-Borwein gradient...The linear conjugate gradient method is an optimal method for convex quadratic minimization due to the Krylov subspace minimization property. The proposition of limited-memory BFGS method and Barzilai-Borwein gradient method, however, heavily restricted the use of conjugate gradient method for largescale nonlinear optimization. This is, to the great extent, due to the requirement of a relatively exact line search at each iteration and the loss of conjugacy property of the search directions in various occasions. On the contrary, the limited-memory BFGS method and the Barzilai-Bowein gradient method share the so-called asymptotical one stepsize per line-search property, namely, the trial stepsize in the method will asymptotically be accepted by the line search when the iteration is close to the solution. This paper will focus on the analysis of the subspace minimization conjugate gradient method by Yuan and Stoer(1995). Specifically, if choosing the parameter in the method by combining the Barzilai-Borwein idea, we will be able to provide some efficient Barzilai-Borwein conjugate gradient(BBCG) methods. The initial numerical experiments show that one of the variants, BBCG3, is specially efficient among many others without line searches. This variant of the BBCG method might enjoy the asymptotical one stepsize per line-search property and become a strong candidate for large-scale nonlinear optimization.展开更多
We consider the Cauchy problem for nonlinear Schrdinger equation iut + Δu = ±|u|pu,4/d< p <4 /d-2 in high dimensions d 6. We prove the stability of solutions in the critical space H˙xsp , where sp = d/2-p...We consider the Cauchy problem for nonlinear Schrdinger equation iut + Δu = ±|u|pu,4/d< p <4 /d-2 in high dimensions d 6. We prove the stability of solutions in the critical space H˙xsp , where sp = d/2-p/2 .展开更多
The authors study the Rayleigh-Taylor instability for two incompressible immiscible fluids with or without surface tension, evolving with a free interface in the presence of a uniform gravitational field in Eulerian c...The authors study the Rayleigh-Taylor instability for two incompressible immiscible fluids with or without surface tension, evolving with a free interface in the presence of a uniform gravitational field in Eulerian coordinates. To deal with the free surface, instead of using the transformation to Lagrangian coordinates, the perturbed equations in Eulerian coordinates are transformed to an integral form and the two-fluid flow is formulated as a single-fluid flow in a fixed domain, thus offering an alternative approach to deal with the jump conditions at the free interface. First, the linearized problem around the steady state which describes a denser immiscible fluid lying above a light one with a free interface separating the two fluids, both fluids being in(unstable) equilibrium is analyzed. By a general method of studying a family of modes, the smooth(when restricted to each fluid domain) solutions to the linearized problem that grow exponentially fast in time in Sobolev spaces are constructed, thus leading to a global instability result for the linearized problem.Then, by using these pathological solutions, the global instability for the corresponding nonlinear problem in an appropriate sense is demonstrated.展开更多
文摘In this paper,we prove existence results of soutions for the nonlinear implicit complementarity problems NICP(T,S,K) where K is a closed weakly locally compact convex cone in a reflexive Banach space E,T is a nonlinear operator from K into E* (i. e.,the dual space of E) and S is a nonlinear operator from K into E. Our results are the essential improvements and extension of the results obtained previously by several authors including Thera,Ding,and Zeng.
文摘We present the DKP oscillator model of spins 0 and 1, in a noncommutative space. In the case of spin 0, the equation is reduced to Klein Gordon oscillator type, the wave functions are then deduced and compared with the DKP spinless particle subjected to the interaction of a constant magnetic field. For the case of spin 1, the problem is equivalent with the behavior of the DKP equation of spin 1 in a commutative space describing the movement of a vectorial boson subjected to the action of a constant magnetic field with additional correction which depends on the noncommutativity parameter.
文摘First a general model for a three-step projection method is introduced, and second it has been applied to the approximation solvability of a system of nonlinear variational inequality problems in a Hilbert space setting. Let H be a real Hilbert space and K be a nonempty closed convex subset of H. For arbitrarily chosen initial points x0, y0, z0 ∈ K, compute sequences xn, yn, zn such thatT : K→ H is a nonlinear mapping onto K. At last three-step models are applied to some variational inequality problems.
文摘This study was concerned with developing an antiretroviral drug distribution routing system with a goal of improving fleet utilization whilst reducing delivery costs. The system would enhance ARV drug delivery satisfaction of patients staying in the Limpopo province of South Africa. A VRP mathematical programming problem was formulated and the Savings Based as well as the Sequential Insertion algorithm was used to solve the problem. A mini program was then developed in Visual Basic.Net software that speeded up the vehicle route determination heuristics. This computer based vehicle routing system gave a total travelled distance of 1302.94 km and a space utilization of 93% as compared to the pigeonhole system which had a total travelled distance of 2874.2 km and space utilization of 86% for the demand of 5384 ARV drug patients. Therefore, the mathematical programming approach is more cost effective and efficient thereby enhancing delivery satisfaction to ARV drug patients in the province.
基金the Foundation of Jiangsu Education Committee (04KJD110170)the Foundation of Univer-sity of Science and Technology of Suzhou.
文摘We utilize Park's maximal element theorem in H-space to prove the existence theorems of solutions of the complementarity problems for multivalued non-monotone operators in Banach spaces.
基金supported by National Natural Science Foundation of China (Grant Nos. 81173633, 11401038 and 11331012)the Chinese Academy of Sciences Grant (Grant No. kjcx-yw-s7-03)+2 种基金National Natural Science Foundation of China for Distinguished Young Scientists (Grant No. 11125107)the Key Project of Chinese National Programs for Fundamental Research and Development (Grant No. 2015CB856000)the Fundamental Research Funds for the Central Universities (Grant No. 2014RC0904)
文摘The linear conjugate gradient method is an optimal method for convex quadratic minimization due to the Krylov subspace minimization property. The proposition of limited-memory BFGS method and Barzilai-Borwein gradient method, however, heavily restricted the use of conjugate gradient method for largescale nonlinear optimization. This is, to the great extent, due to the requirement of a relatively exact line search at each iteration and the loss of conjugacy property of the search directions in various occasions. On the contrary, the limited-memory BFGS method and the Barzilai-Bowein gradient method share the so-called asymptotical one stepsize per line-search property, namely, the trial stepsize in the method will asymptotically be accepted by the line search when the iteration is close to the solution. This paper will focus on the analysis of the subspace minimization conjugate gradient method by Yuan and Stoer(1995). Specifically, if choosing the parameter in the method by combining the Barzilai-Borwein idea, we will be able to provide some efficient Barzilai-Borwein conjugate gradient(BBCG) methods. The initial numerical experiments show that one of the variants, BBCG3, is specially efficient among many others without line searches. This variant of the BBCG method might enjoy the asymptotical one stepsize per line-search property and become a strong candidate for large-scale nonlinear optimization.
基金supported by the start-up fund from University of Iowasupported by US National Science Foundation (Grant No. 0908032)
文摘We consider the Cauchy problem for nonlinear Schrdinger equation iut + Δu = ±|u|pu,4/d< p <4 /d-2 in high dimensions d 6. We prove the stability of solutions in the critical space H˙xsp , where sp = d/2-p/2 .
基金supported by the National Natural Science Foundation of China(Nos.11101044,11271051,11229101,11301083,11371065,11471134)the Fujian Provincial Natural Science Foundation of China(No.2014J01011)+1 种基金the National Basic Research Program(No.2011CB309705)the Beijing Center for Mathematics and Information Interdisciplinary Sciences
文摘The authors study the Rayleigh-Taylor instability for two incompressible immiscible fluids with or without surface tension, evolving with a free interface in the presence of a uniform gravitational field in Eulerian coordinates. To deal with the free surface, instead of using the transformation to Lagrangian coordinates, the perturbed equations in Eulerian coordinates are transformed to an integral form and the two-fluid flow is formulated as a single-fluid flow in a fixed domain, thus offering an alternative approach to deal with the jump conditions at the free interface. First, the linearized problem around the steady state which describes a denser immiscible fluid lying above a light one with a free interface separating the two fluids, both fluids being in(unstable) equilibrium is analyzed. By a general method of studying a family of modes, the smooth(when restricted to each fluid domain) solutions to the linearized problem that grow exponentially fast in time in Sobolev spaces are constructed, thus leading to a global instability result for the linearized problem.Then, by using these pathological solutions, the global instability for the corresponding nonlinear problem in an appropriate sense is demonstrated.