Microstructure and mechanical properties of AA2024 after severe plastic deformation (SPD) and non-isothermal annealing were investigated. The non-isothermal treatment was carried out on the severely deformed AA2024,...Microstructure and mechanical properties of AA2024 after severe plastic deformation (SPD) and non-isothermal annealing were investigated. The non-isothermal treatment was carried out on the severely deformed AA2024, and the interaction between restoration and precipitation phenomena was investigated. Differential scanning calorimetry, hardness and shear punch tests illustrate that static recovery and dissolution of GPB zones/Cu-Mg co-clusters occur concurrently through non-isothermal annealing. Scanning electron microscope and electron backscatter diffraction illustrate that non-isothermal annealing of deformed AA2024 up to 250 ℃ promotes the particle-free regions and also particle stimulated nucleation. Results show that through heating with the rate of 10 ℃/min up to 250 ℃, the ultimate shear strength and the hardness are maximum due to the presence of S'/S phases which have been detected during non-isothermal differential scanning calorimetry experiment. Also, recrystallization phenomenon occurs in temperature range which includes the dissolution of S'/S phases. The concurrent recrystallization and dissolution of S'/S phase at 380 ℃ have been verified by differential scanning calorimetry, mechanical properties, and optical microscope.展开更多
In order to investigate the evolution of microstructure and flow stress during non-isothermal annealing,aluminum samples were subjected to strain magnitudes of 1, 2 and 3 by performing 2, 4 and 6 passes of multi-direc...In order to investigate the evolution of microstructure and flow stress during non-isothermal annealing,aluminum samples were subjected to strain magnitudes of 1, 2 and 3 by performing 2, 4 and 6 passes of multi-directional forging. Then, the samples were non-isothermally annealed up to 150, 200, 250, 300 and 350 ℃. The evolution of dislocation density and flow stress was studied via modeling of deformation and annealing stages. It was found that 2, 4 and 6 passes multi-directionally forged samples show thermal stability up to temperatures of 250, 250 and 300 ℃, respectively. Modeling results and experimental data were compared and a reasonable agreement was observed. It was noticed that 2 and 4 passes multi-directionally forged samples annealed non-isothermally up to 350 ℃ have a lower experimental flow stress in comparison with the flow stress achieved from the model.The underlying reason is that the proposed non-isothermal annealing model is based only on the intragranular dislocation density evolution, which only takes into account recovery and recrystallization phenomena. However, at 350℃ grain growth takes place in addition to recovery and recrystallization,which is the source of discrepancy between the modeling and experimental flow stress.展开更多
基金research board of Sharif University of Technology for the financial support and the provision of the research facilities used in this work
文摘Microstructure and mechanical properties of AA2024 after severe plastic deformation (SPD) and non-isothermal annealing were investigated. The non-isothermal treatment was carried out on the severely deformed AA2024, and the interaction between restoration and precipitation phenomena was investigated. Differential scanning calorimetry, hardness and shear punch tests illustrate that static recovery and dissolution of GPB zones/Cu-Mg co-clusters occur concurrently through non-isothermal annealing. Scanning electron microscope and electron backscatter diffraction illustrate that non-isothermal annealing of deformed AA2024 up to 250 ℃ promotes the particle-free regions and also particle stimulated nucleation. Results show that through heating with the rate of 10 ℃/min up to 250 ℃, the ultimate shear strength and the hardness are maximum due to the presence of S'/S phases which have been detected during non-isothermal differential scanning calorimetry experiment. Also, recrystallization phenomenon occurs in temperature range which includes the dissolution of S'/S phases. The concurrent recrystallization and dissolution of S'/S phase at 380 ℃ have been verified by differential scanning calorimetry, mechanical properties, and optical microscope.
基金the research board of Sharif University of Technology, Iran, for the financial support and provision of the research facilities used for this work
文摘In order to investigate the evolution of microstructure and flow stress during non-isothermal annealing,aluminum samples were subjected to strain magnitudes of 1, 2 and 3 by performing 2, 4 and 6 passes of multi-directional forging. Then, the samples were non-isothermally annealed up to 150, 200, 250, 300 and 350 ℃. The evolution of dislocation density and flow stress was studied via modeling of deformation and annealing stages. It was found that 2, 4 and 6 passes multi-directionally forged samples show thermal stability up to temperatures of 250, 250 and 300 ℃, respectively. Modeling results and experimental data were compared and a reasonable agreement was observed. It was noticed that 2 and 4 passes multi-directionally forged samples annealed non-isothermally up to 350 ℃ have a lower experimental flow stress in comparison with the flow stress achieved from the model.The underlying reason is that the proposed non-isothermal annealing model is based only on the intragranular dislocation density evolution, which only takes into account recovery and recrystallization phenomena. However, at 350℃ grain growth takes place in addition to recovery and recrystallization,which is the source of discrepancy between the modeling and experimental flow stress.