The existence of solutions for second order three-point boundary value problems with nonlinear growth at resonance is studied by using Mawhin continuation theorem. The result shows that theorem 1 and 2 at least have o...The existence of solutions for second order three-point boundary value problems with nonlinear growth at resonance is studied by using Mawhin continuation theorem. The result shows that theorem 1 and 2 at least have one solution in c1[0,1]展开更多
Very recently, we have found that the method used in our recent paper (appeared in 2005) could be extended to obtain two general series-transformation formulas for formal power series defined over the complex number...Very recently, we have found that the method used in our recent paper (appeared in 2005) could be extended to obtain two general series-transformation formulas for formal power series defined over the complex number field. As usual, △, △k, D, and Dk denote, respectively, the difference and differential operators with △f(t) = f(t + 1) - f(t), Dr(t) = (d/dr)f (t) and △^0 = D0 = 1 (the identity operator). What we have obtained are the following two general transformation formulas (formal expansion formulas) ∞∑k=0 f(k)φ^(k)(0)t^k/k!=∞∑k=0△^kf(0)φ^(k)(0)t^k/k! (1) ∞∑k=0 f(k)φ^(k)(0)t^k/k!=∞∑k=01/k!f(0)φ^(k)(0)t^k/k! (2)展开更多
This paper deals with the existence of three positive solutions for a class of nonlinear singular three-point boundary value problem with p-Laplacian. By means of a fixed point theorem duo to Leggett and Williams, suf...This paper deals with the existence of three positive solutions for a class of nonlinear singular three-point boundary value problem with p-Laplacian. By means of a fixed point theorem duo to Leggett and Williams, sufficient condition for the existence of at least three positive solutions to the nonlinear singular three-point boundary value problem is established展开更多
文摘The existence of solutions for second order three-point boundary value problems with nonlinear growth at resonance is studied by using Mawhin continuation theorem. The result shows that theorem 1 and 2 at least have one solution in c1[0,1]
基金the Natural Science Foundation of Gansu Province of China
文摘Very recently, we have found that the method used in our recent paper (appeared in 2005) could be extended to obtain two general series-transformation formulas for formal power series defined over the complex number field. As usual, △, △k, D, and Dk denote, respectively, the difference and differential operators with △f(t) = f(t + 1) - f(t), Dr(t) = (d/dr)f (t) and △^0 = D0 = 1 (the identity operator). What we have obtained are the following two general transformation formulas (formal expansion formulas) ∞∑k=0 f(k)φ^(k)(0)t^k/k!=∞∑k=0△^kf(0)φ^(k)(0)t^k/k! (1) ∞∑k=0 f(k)φ^(k)(0)t^k/k!=∞∑k=01/k!f(0)φ^(k)(0)t^k/k! (2)
基金the Tutorial Scientific Research Program Foundation of Education Department of Gansu Province (Nos. 0710-040810-03)
文摘This paper deals with the existence of three positive solutions for a class of nonlinear singular three-point boundary value problem with p-Laplacian. By means of a fixed point theorem duo to Leggett and Williams, sufficient condition for the existence of at least three positive solutions to the nonlinear singular three-point boundary value problem is established