In this paper, the problem of determining the largest possible set of symmetries for an important nonlinear dynamical system: the two-dimensional damped Kuramoto-Sivashinsky ((21)) DKS ) equation is studied. By ...In this paper, the problem of determining the largest possible set of symmetries for an important nonlinear dynamical system: the two-dimensional damped Kuramoto-Sivashinsky ((21)) DKS ) equation is studied. By applying the basic Lie symmetry method for the (217)) DKS equation, the classical Lie point symmetry operators are obtained. Also, the optimal system of one-dimensional subalgebras of the equation is constructed. The Lie invariants as well as similarity reduced equations corresponding to infinitesimal symmetries are obtained. The nonclassicaJ symmetries of the (2D) DKS equation are also investigated.展开更多
By means of the Baecklund transformation, a quite general variable separation solution of the (2+1)-dimensional Maccari systems is derived. In addition to some types of the usual localized excitations such as dromion,...By means of the Baecklund transformation, a quite general variable separation solution of the (2+1)-dimensional Maccari systems is derived. In addition to some types of the usual localized excitations such as dromion, lumps, ring soliton and oscillated dromion, breathers solution, fractal-dromion, fractal-lump and chaotic soliton structures can be easily constructed by selecting the arbitrary functions appropriately, a new novel class of coherent localized structures like peakon solution and compacton solution of this new system are found by selecting apfropriate functions.展开更多
A 2D square lattice is studied. By using the continuum approximation, we set up the differential equations of motion for an arbitrary particle in the square lattice which subjects to an external periodic substrate pot...A 2D square lattice is studied. By using the continuum approximation, we set up the differential equations of motion for an arbitrary particle in the square lattice which subjects to an external periodic substrate potential. The exact solitary waves of the system are found for special cases. We conclude that the adhesive force f and the angle between propagation directions of upper and lower layers can affect these waves.展开更多
文摘In this paper, the problem of determining the largest possible set of symmetries for an important nonlinear dynamical system: the two-dimensional damped Kuramoto-Sivashinsky ((21)) DKS ) equation is studied. By applying the basic Lie symmetry method for the (217)) DKS equation, the classical Lie point symmetry operators are obtained. Also, the optimal system of one-dimensional subalgebras of the equation is constructed. The Lie invariants as well as similarity reduced equations corresponding to infinitesimal symmetries are obtained. The nonclassicaJ symmetries of the (2D) DKS equation are also investigated.
文摘By means of the Baecklund transformation, a quite general variable separation solution of the (2+1)-dimensional Maccari systems is derived. In addition to some types of the usual localized excitations such as dromion, lumps, ring soliton and oscillated dromion, breathers solution, fractal-dromion, fractal-lump and chaotic soliton structures can be easily constructed by selecting the arbitrary functions appropriately, a new novel class of coherent localized structures like peakon solution and compacton solution of this new system are found by selecting apfropriate functions.
基金supported by National Natural Science Foundation of China under Grant No. 10575082the Natural Science Foundation of Gansu Province under Grant No. 3ZS061-A25-013the Natural Science Foundation of Northwest Normal University under Grant No. NWNU-KJCXGC-03-17
文摘A 2D square lattice is studied. By using the continuum approximation, we set up the differential equations of motion for an arbitrary particle in the square lattice which subjects to an external periodic substrate potential. The exact solitary waves of the system are found for special cases. We conclude that the adhesive force f and the angle between propagation directions of upper and lower layers can affect these waves.