针对复杂工业过程存在的多变量、相关性和非线性问题,提出一种新的基于非线性偏最小二乘(partial least squares,PLS)回归的软测量建模方法。该方法利用PLS作为模型的外部框架来提取输入输出主成分变量,同时消除变量间的相关性,然后用...针对复杂工业过程存在的多变量、相关性和非线性问题,提出一种新的基于非线性偏最小二乘(partial least squares,PLS)回归的软测量建模方法。该方法利用PLS作为模型的外部框架来提取输入输出主成分变量,同时消除变量间的相关性,然后用最小二乘支持向量机(least squares support vector machine,LSSVM)作为内部函数来描述主成分变量之间的非线性关系,并引入基于误差最小化的权值更新策略,来改进模型的预测精度。以pH中和过程的Benchmark模型来验证该方法的性能,并与其他建模方法比较,结果表明该方法预测精度较高,而且具有较强的泛化能力。将该方法应用于某电站燃煤锅炉的NOx排放软测量建模之中,取得了较好的预测效果。展开更多
文摘针对复杂工业过程存在的多变量、相关性和非线性问题,提出一种新的基于非线性偏最小二乘(partial least squares,PLS)回归的软测量建模方法。该方法利用PLS作为模型的外部框架来提取输入输出主成分变量,同时消除变量间的相关性,然后用最小二乘支持向量机(least squares support vector machine,LSSVM)作为内部函数来描述主成分变量之间的非线性关系,并引入基于误差最小化的权值更新策略,来改进模型的预测精度。以pH中和过程的Benchmark模型来验证该方法的性能,并与其他建模方法比较,结果表明该方法预测精度较高,而且具有较强的泛化能力。将该方法应用于某电站燃煤锅炉的NOx排放软测量建模之中,取得了较好的预测效果。