The transition boundaries of period doubling on the physical parameter plane of a Duffing system are obtained by the general Newton′s method, and the motion on different areas divided by transition boundaries is stu...The transition boundaries of period doubling on the physical parameter plane of a Duffing system are obtained by the general Newton′s method, and the motion on different areas divided by transition boundaries is studied in this paper. When the physical parameters transpass the boundaries, the solutions of period T =2π/ω will lose their stability, and the solutions of period T =2π/ω take place. Continuous period doubling bifurcations lead to chaos.展开更多
Complex dynamics are studied in the T system, a three-dimensional autonomous nonlinear system. In particular, we perform an extended Hopf bifurcation analysis of the system. The periodic orbit immediately following th...Complex dynamics are studied in the T system, a three-dimensional autonomous nonlinear system. In particular, we perform an extended Hopf bifurcation analysis of the system. The periodic orbit immediately following the Hopf bifurcation is constructed analytically for the T system using the method of multiple scales, and the stability of such orbits is analyzed. Such analytical results complement the numerical results present in the literature. The analytical results in the post-bifurcation regime are verified and extended via numerical simulations, as well as by the use of standard power spectra, autocorrelation functions, and fractal dimensions diagnostics. We find that the T system exhibits interesting behaviors in many parameter regimes.展开更多
This paper presents the results from a numerical study on the nonlinear dynamic behaviors including bifurcation and chaos of a truss spar platform. In view of the mutual influences between the heave and the pitch mode...This paper presents the results from a numerical study on the nonlinear dynamic behaviors including bifurcation and chaos of a truss spar platform. In view of the mutual influences between the heave and the pitch modes, the coupled heave and pitch motion equations of the spar platform hull were established in the regular waves. In order to analyze the nonlinear motions of the platform, three-dimensional maximum Lyapunov exponent graphs and the bifurcation graphs were constructed, the Poincare maps and the power spectrums of the platform response were calculated. It was found that the platform motions are sensitive to wave fre- quency. With changing wave frequency, the platform undergoes complicated nonlinear motions, including 1/2 sub-harmonic motion, quasi-periodic motion and chaotic motion. When the wave frequency approaches the natural frequency of the heave mode of the platform, the platform moves with quasi-periodic motion and chaotic motional temately. For a certain range of wave frequencies, the platform moves with totally chaotic motion. The range of wave frequencies which leads to chaotic motion of the platform increases with increasing wave height. The three-dimensional maximum Lyapunov exponent graphs and the bifurcation graphs reveal the nonlinear motions of the spar platform under different wave conditions.展开更多
The normal forms of generalized Neimark-Sacker bifurcation are extensively studied using normal form theory of dynamic system. It is well known that if the normal forms of the generalized Neimark-Sacker bifurcation ar...The normal forms of generalized Neimark-Sacker bifurcation are extensively studied using normal form theory of dynamic system. It is well known that if the normal forms of the generalized Neimark-Sacker bifurcation are expressed in polar coordinates, then all odd order terms must, in general, remain in the normal forms. In this paper, five theorems are presented to show that the conventional Neimark-Sacker bifurcation can be further simplified. The simplest normal forms of generalized Neimark-Sacker bifurcation are calculated. Based on the conventional normal form, using appropriate nonlinear transformations, it is found that the generalized Neimark-Sacker bifurcation has at most two nonlinear terms remaining in the amplitude equations of the simplest normal forms up to any order. There are two kinds of simplest normal forms. Their algebraic expression formulas of the simplest normal forms in terms of the coefficients of the generalized Neimark-Sacker bifurcation systems are given.展开更多
Rotor systems supported by angular contact ball bearings are complicated due to nonlinear Hertzian contact force. In this paper, nonlinear bearing forces of ball bearing under five-dimensional loads are given, and 5-D...Rotor systems supported by angular contact ball bearings are complicated due to nonlinear Hertzian contact force. In this paper, nonlinear bearing forces of ball bearing under five-dimensional loads are given, and 5-DOF dynamic equations of a rigid rotor ball bearing system are established. Continuation-shooting algorithm for periodic solutions of the nonlinear non-autonomous dynamic system and Floquet multipliers of the system are used. Furthermore, the bifurcation and stability of the periodic motion of the system in different parametric domains are also studied. Results show that the bifurcation and stability of period-1 motion vary with structural parameters and operating parameters of the rigid rotor ball bearing system. Avoidance of unbalanced force and bending moment, appropriate initial contact angle, axial load and damping factor help enhance the unstable rotating speed of period-1 motion.展开更多
An infection-age structured epidemic model with a nonlinear incidence rate is investigated.We formulate the model as an abstract non-densely defined Cauchy problem and derive the condition which guarantees the existen...An infection-age structured epidemic model with a nonlinear incidence rate is investigated.We formulate the model as an abstract non-densely defined Cauchy problem and derive the condition which guarantees the existence and uniqueness for positive age-dependent equilibrium of the model.By analyzing the associated characteristic transcendental equation and applying the normal form theory presented recently for non-densely defined semilinear equations,we show that the SIR(susceptible-infected-recovered)epidemic model undergoes Zero-Hopf bifurcation at the positive equilibrium which is the main result of this paper.展开更多
In this paper, analytical and numerical studies are carried out on the full annular rub motions of a nonlinear Jeffcott rotor. Transition sets of the synchronous full annular rub are given with the help of averaging m...In this paper, analytical and numerical studies are carried out on the full annular rub motions of a nonlinear Jeffcott rotor. Transition sets of the synchronous full annular rub are given with the help of averaging method and constraint bifurcation theory to discuss the effects of system parameters on jump phenomena. Routh-Hurwitz criteria are employed to analyze the stability of synchronous full annular rub solution and determine the boundaries of static and Hopf bifurcations. Finally, the response and onset condition of reverse dry whip are investigated numerically, and at the same time, the influences of rotor parameters and rotation speed on the characteristics of the rotor response are investigated.展开更多
A triad mode resonance, or three-wave resonance, is typical of dynamical systems with quadratic nonlinearities. Suspended cables are found to be rich in triad mode resonant dynamics. In this paper, modulation equation...A triad mode resonance, or three-wave resonance, is typical of dynamical systems with quadratic nonlinearities. Suspended cables are found to be rich in triad mode resonant dynamics. In this paper, modulation equations for cable's triad resonance are formulated by the multiple scale method. Dynamic conservative quantities, i.e., mode energy and Manley-Rowe relations, are then constructed. Equilibrium/dynamic solutions of the modulation equations are obtained, and full investigations into their stability and bifurcation characteristics are presented. Various bifurcation behaviors are detected in cable's triad resonant responses, such as saddle-node, Hopf, pitchfork and period-doubling bifurcations. Nonlinear behaviors, like jump and saturation phenomena, are also found in cable's responses. Based upon the bifurcation analysis, two interesting properties associated with activation of cable's triad resonance are also proposed, i.e., energy barrier and directional dependence. The first gives the critical amplitude of high-frequency mode to activate cable's triad resonance, and the second characterizes the degree of difficulty for activating cable's triad resonance in two opposite directions, i.e., with positive or negative internal detuning parameter.展开更多
After Bénard's experiment in 1900, Rayleigh formulated heat convection problems by the Oberbeck-Boussinesq approximation in the horizontal strip domain in 1916. The pattern formations have been investigated by t...After Bénard's experiment in 1900, Rayleigh formulated heat convection problems by the Oberbeck-Boussinesq approximation in the horizontal strip domain in 1916. The pattern formations have been investigated by the bifurcation theory, weakly nonlinear theories and computational approaches. The boundary conditions for the velocity on the upper and lower boundaries are usually assumed as stress-free or no-slip. In the first part of this paper, some bifurcation pictures for the case of the stress-free on the upper boundary and the no-slip on the lower boundary are obtained. In the second part of this paper, the bifurcation pictures for the case of the stress-free on both boundaries by a computer assisted proof are verified. At last., Bénard-Marangoni heat convections for the ease of the free surface of the upper boundary are considered.展开更多
Using a combination of analytical and numerical methods, the paper studies bifurcations and chaotic motions of a two-dimensional airfoil with cubic nonlinearity in incompressible flow. One type of critical points (cha...Using a combination of analytical and numerical methods, the paper studies bifurcations and chaotic motions of a two-dimensional airfoil with cubic nonlinearity in incompressible flow. One type of critical points (characterized by a negative eigenvalue, a simple zero eigenvalue and a pair of purely imaginary eigenvalues) for the bifurcation response equations is considered. With the aid of the normal form theory, the explicit expressions of the critical bifurcation lines leading to incipient and secondary bifurcations are obtained. The stability of the bifurcation solutions is also investigated. By using the undetermined coefficient method, the homoclinic orbit is found, and the uniform convergence of the homoclinic orbit series expansion is proved. It analytically demonstrates that there exists a homoclinic orbit joining the initial equilibrium point to itself, therefore Smale horseshoe chaos occurs for this system via Si'lnikov criterion. The system evolves into chaotic motion through period-doubling bifurcation, and is periodic again as the dimensionless airflow speed increases. Numerical simulations are also given, which confirm the analytical results.展开更多
This paper investigates the nonlinear dynamics of network-based dynamical systems where network communication channels of finite data rates are inserted into the closed loops of the control systems. The authors analyz...This paper investigates the nonlinear dynamics of network-based dynamical systems where network communication channels of finite data rates are inserted into the closed loops of the control systems. The authors analyze the bifurcation and chaotic behavior of the non-smooth dynamical systems. The authors first prove that for almost all system parameters there are no periodic orbits. This result distinguishes this type of non-smooth dynamical systems from many others exhibiting border-collision bifurcations. Next, the authors show analytically that the chaotic sets are separated from the region containing the line segment of all fixed points with a finite distance. Finally, the authors employ a simple model to highlight that both the number of clients sharing a common network channel and fluctuations in the available network bandwidth have significant influence on the performance of such dynamical systems.展开更多
文摘The transition boundaries of period doubling on the physical parameter plane of a Duffing system are obtained by the general Newton′s method, and the motion on different areas divided by transition boundaries is studied in this paper. When the physical parameters transpass the boundaries, the solutions of period T =2π/ω will lose their stability, and the solutions of period T =2π/ω take place. Continuous period doubling bifurcations lead to chaos.
文摘Complex dynamics are studied in the T system, a three-dimensional autonomous nonlinear system. In particular, we perform an extended Hopf bifurcation analysis of the system. The periodic orbit immediately following the Hopf bifurcation is constructed analytically for the T system using the method of multiple scales, and the stability of such orbits is analyzed. Such analytical results complement the numerical results present in the literature. The analytical results in the post-bifurcation regime are verified and extended via numerical simulations, as well as by the use of standard power spectra, autocorrelation functions, and fractal dimensions diagnostics. We find that the T system exhibits interesting behaviors in many parameter regimes.
基金supported by the National Natural Science Foundation of China under Grant No.51179125the Innovation Foundation of Tianjin University under Approving No.1301
文摘This paper presents the results from a numerical study on the nonlinear dynamic behaviors including bifurcation and chaos of a truss spar platform. In view of the mutual influences between the heave and the pitch modes, the coupled heave and pitch motion equations of the spar platform hull were established in the regular waves. In order to analyze the nonlinear motions of the platform, three-dimensional maximum Lyapunov exponent graphs and the bifurcation graphs were constructed, the Poincare maps and the power spectrums of the platform response were calculated. It was found that the platform motions are sensitive to wave fre- quency. With changing wave frequency, the platform undergoes complicated nonlinear motions, including 1/2 sub-harmonic motion, quasi-periodic motion and chaotic motion. When the wave frequency approaches the natural frequency of the heave mode of the platform, the platform moves with quasi-periodic motion and chaotic motional temately. For a certain range of wave frequencies, the platform moves with totally chaotic motion. The range of wave frequencies which leads to chaotic motion of the platform increases with increasing wave height. The three-dimensional maximum Lyapunov exponent graphs and the bifurcation graphs reveal the nonlinear motions of the spar platform under different wave conditions.
基金Supported by National Natural Science Foundation of China (No10872141)Doctoral Foundation of Ministry of Education of China (No20060056005)Natural Science Foundation of Tianjin University of Science and Technology (No20070210)
文摘The normal forms of generalized Neimark-Sacker bifurcation are extensively studied using normal form theory of dynamic system. It is well known that if the normal forms of the generalized Neimark-Sacker bifurcation are expressed in polar coordinates, then all odd order terms must, in general, remain in the normal forms. In this paper, five theorems are presented to show that the conventional Neimark-Sacker bifurcation can be further simplified. The simplest normal forms of generalized Neimark-Sacker bifurcation are calculated. Based on the conventional normal form, using appropriate nonlinear transformations, it is found that the generalized Neimark-Sacker bifurcation has at most two nonlinear terms remaining in the amplitude equations of the simplest normal forms up to any order. There are two kinds of simplest normal forms. Their algebraic expression formulas of the simplest normal forms in terms of the coefficients of the generalized Neimark-Sacker bifurcation systems are given.
基金Supported by National Natural Science Foundation of China (No.50905061)the Fundamental Research Funds for Central Universities
文摘Rotor systems supported by angular contact ball bearings are complicated due to nonlinear Hertzian contact force. In this paper, nonlinear bearing forces of ball bearing under five-dimensional loads are given, and 5-DOF dynamic equations of a rigid rotor ball bearing system are established. Continuation-shooting algorithm for periodic solutions of the nonlinear non-autonomous dynamic system and Floquet multipliers of the system are used. Furthermore, the bifurcation and stability of the periodic motion of the system in different parametric domains are also studied. Results show that the bifurcation and stability of period-1 motion vary with structural parameters and operating parameters of the rigid rotor ball bearing system. Avoidance of unbalanced force and bending moment, appropriate initial contact angle, axial load and damping factor help enhance the unstable rotating speed of period-1 motion.
基金supported by National Natural Science Foundation of China (Grant Nos. 11471044 and 11371058)the Fundamental Research Funds for the Central Universities
文摘An infection-age structured epidemic model with a nonlinear incidence rate is investigated.We formulate the model as an abstract non-densely defined Cauchy problem and derive the condition which guarantees the existence and uniqueness for positive age-dependent equilibrium of the model.By analyzing the associated characteristic transcendental equation and applying the normal form theory presented recently for non-densely defined semilinear equations,we show that the SIR(susceptible-infected-recovered)epidemic model undergoes Zero-Hopf bifurcation at the positive equilibrium which is the main result of this paper.
基金supported by the National Natural Science Foundation of China (Grant No. 10632040)
文摘In this paper, analytical and numerical studies are carried out on the full annular rub motions of a nonlinear Jeffcott rotor. Transition sets of the synchronous full annular rub are given with the help of averaging method and constraint bifurcation theory to discuss the effects of system parameters on jump phenomena. Routh-Hurwitz criteria are employed to analyze the stability of synchronous full annular rub solution and determine the boundaries of static and Hopf bifurcations. Finally, the response and onset condition of reverse dry whip are investigated numerically, and at the same time, the influences of rotor parameters and rotation speed on the characteristics of the rotor response are investigated.
基金Supporting Program for Young Investigators,Hunan UniversityNational Science Foundation of China(Grant Nos.11502076 and 11572117)
文摘A triad mode resonance, or three-wave resonance, is typical of dynamical systems with quadratic nonlinearities. Suspended cables are found to be rich in triad mode resonant dynamics. In this paper, modulation equations for cable's triad resonance are formulated by the multiple scale method. Dynamic conservative quantities, i.e., mode energy and Manley-Rowe relations, are then constructed. Equilibrium/dynamic solutions of the modulation equations are obtained, and full investigations into their stability and bifurcation characteristics are presented. Various bifurcation behaviors are detected in cable's triad resonant responses, such as saddle-node, Hopf, pitchfork and period-doubling bifurcations. Nonlinear behaviors, like jump and saturation phenomena, are also found in cable's responses. Based upon the bifurcation analysis, two interesting properties associated with activation of cable's triad resonance are also proposed, i.e., energy barrier and directional dependence. The first gives the critical amplitude of high-frequency mode to activate cable's triad resonance, and the second characterizes the degree of difficulty for activating cable's triad resonance in two opposite directions, i.e., with positive or negative internal detuning parameter.
文摘After Bénard's experiment in 1900, Rayleigh formulated heat convection problems by the Oberbeck-Boussinesq approximation in the horizontal strip domain in 1916. The pattern formations have been investigated by the bifurcation theory, weakly nonlinear theories and computational approaches. The boundary conditions for the velocity on the upper and lower boundaries are usually assumed as stress-free or no-slip. In the first part of this paper, some bifurcation pictures for the case of the stress-free on the upper boundary and the no-slip on the lower boundary are obtained. In the second part of this paper, the bifurcation pictures for the case of the stress-free on both boundaries by a computer assisted proof are verified. At last., Bénard-Marangoni heat convections for the ease of the free surface of the upper boundary are considered.
基金supported by the National Natural Science Foundation of China (Grant Nos. 10972099, 10632040)China Postdoctoral Science Foundation (Grant No. 20090450765)the Natural Science Foundation of Tianjin, China (Grant No. 09JCZDJC26800)
文摘Using a combination of analytical and numerical methods, the paper studies bifurcations and chaotic motions of a two-dimensional airfoil with cubic nonlinearity in incompressible flow. One type of critical points (characterized by a negative eigenvalue, a simple zero eigenvalue and a pair of purely imaginary eigenvalues) for the bifurcation response equations is considered. With the aid of the normal form theory, the explicit expressions of the critical bifurcation lines leading to incipient and secondary bifurcations are obtained. The stability of the bifurcation solutions is also investigated. By using the undetermined coefficient method, the homoclinic orbit is found, and the uniform convergence of the homoclinic orbit series expansion is proved. It analytically demonstrates that there exists a homoclinic orbit joining the initial equilibrium point to itself, therefore Smale horseshoe chaos occurs for this system via Si'lnikov criterion. The system evolves into chaotic motion through period-doubling bifurcation, and is periodic again as the dimensionless airflow speed increases. Numerical simulations are also given, which confirm the analytical results.
基金supported by an the National Natural Science Foundation of China under Grant No.60804015,and an NSERC grant to the third author
文摘This paper investigates the nonlinear dynamics of network-based dynamical systems where network communication channels of finite data rates are inserted into the closed loops of the control systems. The authors analyze the bifurcation and chaotic behavior of the non-smooth dynamical systems. The authors first prove that for almost all system parameters there are no periodic orbits. This result distinguishes this type of non-smooth dynamical systems from many others exhibiting border-collision bifurcations. Next, the authors show analytically that the chaotic sets are separated from the region containing the line segment of all fixed points with a finite distance. Finally, the authors employ a simple model to highlight that both the number of clients sharing a common network channel and fluctuations in the available network bandwidth have significant influence on the performance of such dynamical systems.