期刊文献+
共找到19篇文章
< 1 >
每页显示 20 50 100
星型人字齿轮传动系统非线性分岔特性 被引量:3
1
作者 白壮华 林何 《轻工机械》 CAS 2023年第1期79-84,共6页
为探究星型人字齿轮传动系统分岔动力学特性,课题组采用集中质量法建立了星型人字齿轮系统的纯扭转非线性动力学模型,通过Runge-Kutta法求解了系统非线性振动微分方程,利用相图、Poincaré截面法和分岔特性等分析手段研究了不同转... 为探究星型人字齿轮传动系统分岔动力学特性,课题组采用集中质量法建立了星型人字齿轮系统的纯扭转非线性动力学模型,通过Runge-Kutta法求解了系统非线性振动微分方程,利用相图、Poincaré截面法和分岔特性等分析手段研究了不同转速条件下啮合阻尼比对系统振动响应及分岔特性的影响。结果表明:系统在不同转速下会表现出丰富的非线性动力学行为;随着啮合阻尼比的增大,系统通过倒分岔从混沌状态进入倍周期状态,再由倍周期状态进入单周期状态。因此,在保证系统传动效率的前提下适当提高系统的啮合阻尼比,能够明显弱化系统的混沌运动,减小其振动响应,提高系统稳定性,对系统噪声的降低和寿命的延长具有一定的帮助。 展开更多
关键词 星型人字齿轮 非线性分岔 POINCARÉ截面 RUNGE-KUTTA法 混沌
下载PDF
正交异性圆柱壳的非线性热分岔
2
作者 郭作杰 《常德师范学院学报(自然科学版)》 2000年第2期20-22,共3页
讨论了正交异性圆柱壳在热载荷及微扰外压作用下的分岔 ,在考虑几何非线性的同时 ,也计及了温度效应 ,并利用伽辽金原理及Melnikov函数确定动力系统出现马蹄形时参数应满足的条件 ,分析了温度 ,Batdorf参数等因素对正交异性圆柱壳发生... 讨论了正交异性圆柱壳在热载荷及微扰外压作用下的分岔 ,在考虑几何非线性的同时 ,也计及了温度效应 ,并利用伽辽金原理及Melnikov函数确定动力系统出现马蹄形时参数应满足的条件 ,分析了温度 ,Batdorf参数等因素对正交异性圆柱壳发生混沌运动区域的影响 ,通过具体计算结果表明 ,随着温度升高 ,混沌区域越来越大 ,Batdorf参数值增大 ,混沌区域越来越小。 展开更多
关键词 非线性分岔 Batdorf参数 混沌运动 温度效应 正交异性圆柱索 热应力分析
下载PDF
基于扩展方程法的电力系统双参数分岔边界的计算 被引量:2
3
作者 郭力 张尧 刘永强 《继电器》 CSCD 北大核心 2006年第12期20-24,共5页
通过对电力系统某些模型的研究,发现系统在鞍结分岔(SNB)前会经历Hopf分岔(HB)的失稳,采用Hopf分岔理论研究电力系统的稳定运行问题,能够比较全面地考虑非线性系统的非线性性态,深入揭示系统失稳的机理。然而以往的间接法在计算Hopf分... 通过对电力系统某些模型的研究,发现系统在鞍结分岔(SNB)前会经历Hopf分岔(HB)的失稳,采用Hopf分岔理论研究电力系统的稳定运行问题,能够比较全面地考虑非线性系统的非线性性态,深入揭示系统失稳的机理。然而以往的间接法在计算Hopf分岔点时,每次改变参数都要计算系统雅可比(Jacob ian)矩阵的特征值并判断是否出现一对实部为零的共轭虚根,导致计算量较大。而直接法对初值的要求比较严格。文中引入双参数构造系统的扩展方程求解SNB分岔曲线,并寻找系统的高阶分岔点TB点,由于TB点是SNB曲线与HB曲线的交点,以该点为初始值,采用扩展方程可以直接求解双参数下的Hopf分岔曲线,进而得到系统在双参数下的分岔边界。 展开更多
关键词 非线性分岔理论 HOPF分岔 扩展方程 TB点
下载PDF
各向同性湍流能量级串中的旋涡分岔机制
4
作者 冉政 《北京航空航天大学学报》 EI CAS CSCD 北大核心 2012年第7期891-894,952,共5页
充分发展各向同性湍流能量级串和多尺度相互作用一直是湍流理论研究的核心问题.目前,对于该物理过程的完全理解或精确的数学描述缺乏基于第一原理的理论.简要介绍了湍流能量级串的概念、起源、发展历程及面临的挑战问题,着重阐述了目前... 充分发展各向同性湍流能量级串和多尺度相互作用一直是湍流理论研究的核心问题.目前,对于该物理过程的完全理解或精确的数学描述缺乏基于第一原理的理论.简要介绍了湍流能量级串的概念、起源、发展历程及面临的挑战问题,着重阐述了目前各种现有描述方法的局限性.基于三维不可压缩流体的Karman-Howarth方程,根据新得到的各向同性湍流尺度演化方程以及在这一方向上的理论进展,证明存在以湍流Taylor微尺度为动力学量的非线性动力系统.根据上述新的理论,可以认为:湍流能量级串由一系列的旋涡非线性分岔过程刻画,呈现Feigenbaum倍周期分岔的途径. 展开更多
关键词 各向同性湍流 能量级串 非线性分岔
下载PDF
无限长薄板在倾斜扰力作用下热分岔
5
作者 吴晓 《常德师范学院学报(自然科学版)》 1999年第4期13-14,17,共3页
采用Galerkin原理及Melnikov函数法研究了无限长薄板在热状态下的非线性振动分岔,并讨论分析了温度、长厚比、扰力倾斜角等因素对无限长薄板发生混地运动区域的影响。
关键词 无限长薄板 倾斜扰力 分岔 混沌 非线性振动分岔 温度 长厚比 扰力倾斜角
下载PDF
考虑PMSM转子偏心作用的EV动力传动系统非线性扭振特性分析 被引量:2
6
作者 胡东海 严炎智 《机械工程学报》 EI CAS CSCD 北大核心 2018年第22期128-136,共9页
针对在路面激励,系统阻尼以及惯性负载作用下,纯电动汽车(Electric vehicle,EV)动力传动系统呈现复杂的非线性扭转振动特性,造成EV动力传动系统失稳的问题,考虑永磁同步电机(Permanent magnet synchronous motor, PMSM)制造和安装引起... 针对在路面激励,系统阻尼以及惯性负载作用下,纯电动汽车(Electric vehicle,EV)动力传动系统呈现复杂的非线性扭转振动特性,造成EV动力传动系统失稳的问题,考虑永磁同步电机(Permanent magnet synchronous motor, PMSM)制造和安装引起的静态偏心和路面激励引起的动态偏心的影响,建立EV动力传动系统非线性扭振模型,求解并分析无扰动Hamilton系统的平衡点,采用控制变量法分别研究路面激励波动,系统阻尼渐变以及惯性负载跃变对EV动力传动系统非线性扭振特性的影响,得到EV动力传动系统失稳的具体途径和机理。研究表明:分别取路面激励f_1、系统阻尼μ_1及惯性负载m_1作为单一变量,当f_1<0.23,μ_1>0.2或0<m_1<0.3时,EV动力传动系统表现为稳定的一周期运动;当0.23<f_1<0.52,0<μ_1<0.2或0.3<m_1<0.5时,EV动力传动系统由倍周期分岔通往混沌运动;当0.52<f_1<0.62或0.5<m_1<0.6时,EV动力传动系统由混沌运动转变为三周期运动;随着路面激励f_1或惯性负载m_1的进一步增大,即0.62<f_1<0.8或0.6<m_1<0.85时,EV动力传动系统表现为倍周期运动与混沌运动交替的运动状态,而随着系统阻尼μ_1进一步增大,即μ_1>0.2时,系统始终表现为稳定的一周期运动。 展开更多
关键词 纯电动汽车 动力传动系统 非线性扭振 转子偏心 非线性分岔 混沌运动
原文传递
带扰流片旋转稳定弹动态稳定性 被引量:2
7
作者 杨杰 常思江 魏伟 《兵工学报》 EI CAS CSCD 北大核心 2021年第8期1613-1623,共11页
为发展一种新型弹道修正弹,以带扰流片旋转稳定弹为研究对象对其进行动态稳定性分析。推导带扰流片旋转稳定弹的动力学模型并简化得到其非齐次角运动方程,求得攻角在阶跃激励下的瞬态响应和稳态响应解析解。根据非线性角运动方程分析旋... 为发展一种新型弹道修正弹,以带扰流片旋转稳定弹为研究对象对其进行动态稳定性分析。推导带扰流片旋转稳定弹的动力学模型并简化得到其非齐次角运动方程,求得攻角在阶跃激励下的瞬态响应和稳态响应解析解。根据非线性角运动方程分析旋转弹结构参数、飞行参数和气动参数对系统分岔特性及稳定性的影响,通过数值计算分析带扰流片旋转稳定弹的修正能力。结果表明:求得的攻角解析解具有较高的精度;气动参数对动力学系统平衡点的稳定域影响较大;扰流片的控制效率很高。研究结果为带扰流片旋转稳定弹的结构参数设计提供了参考。 展开更多
关键词 旋转稳定弹 扰流片 弹道修正 非线性分岔 稳定性
下载PDF
DOUBLE BIFURCATION OF NONLINEAR DUFFING'S OSCILLATOR
8
作者 毕勤胜 陈予恕 《Transactions of Tianjin University》 EI CAS 1997年第2期58-61,共4页
The transition boundaries of period doubling on the physical parameter plane of a Duffing system are obtained by the general Newton′s method, and the motion on different areas divided by transition boundaries is stu... The transition boundaries of period doubling on the physical parameter plane of a Duffing system are obtained by the general Newton′s method, and the motion on different areas divided by transition boundaries is studied in this paper. When the physical parameters transpass the boundaries, the solutions of period T =2π/ω will lose their stability, and the solutions of period T =2π/ω take place. Continuous period doubling bifurcations lead to chaos. 展开更多
关键词 NONLINEARITY period doubling bifurcation Duffing system transition boundary
下载PDF
轮轨磨耗对车辆系统动力学性能的影响
9
作者 崔锦涛 杨湘平 《机械工程师》 2022年第7期168-172,共5页
根据车辆系统Newton-Euler动力学方程,建立了27自由度空间车辆系统动力学Simulink模型,采用该模型分析了车辆系统动力学性能,匹配2种磨耗踏面对动车组动力学性能进行计算分析。结果表明,采用Simulink系统模型具有更简洁的建模方法和直... 根据车辆系统Newton-Euler动力学方程,建立了27自由度空间车辆系统动力学Simulink模型,采用该模型分析了车辆系统动力学性能,匹配2种磨耗踏面对动车组动力学性能进行计算分析。结果表明,采用Simulink系统模型具有更简洁的建模方法和直观的系统拓扑结构。随着车轮踏面的磨耗,车辆稳定性、车体加速度和Sperling平稳性指标均较新轮状态恶劣,轮对蛇行失稳极限环出现了吸引域超临界分岔和单点分岔,其非线性动力学性能也表现出复杂性。 展开更多
关键词 SIMULINK 系统动力学 蛇行运动 非线性分岔
下载PDF
Analytical Hopf Bifurcation and Stability Analysis of T System 被引量:2
10
作者 Robert A.VanGorder S.Roy Choudhury 《Communications in Theoretical Physics》 SCIE CAS CSCD 2011年第4期609-616,共8页
Complex dynamics are studied in the T system, a three-dimensional autonomous nonlinear system. In particular, we perform an extended Hopf bifurcation analysis of the system. The periodic orbit immediately following th... Complex dynamics are studied in the T system, a three-dimensional autonomous nonlinear system. In particular, we perform an extended Hopf bifurcation analysis of the system. The periodic orbit immediately following the Hopf bifurcation is constructed analytically for the T system using the method of multiple scales, and the stability of such orbits is analyzed. Such analytical results complement the numerical results present in the literature. The analytical results in the post-bifurcation regime are verified and extended via numerical simulations, as well as by the use of standard power spectra, autocorrelation functions, and fractal dimensions diagnostics. We find that the T system exhibits interesting behaviors in many parameter regimes. 展开更多
关键词 extended Hopf bifurcation analysis method of multiple scales T system stability analysis
下载PDF
The Nonlinear Bifurcation and Chaos of Coupled Heave and Pitch Motions of a Truss Spar Platform 被引量:3
11
作者 HUANG Lei LIU Liqin +1 位作者 LIU Chunyuan TANG Yougang 《Journal of Ocean University of China》 SCIE CAS 2015年第5期795-802,共8页
This paper presents the results from a numerical study on the nonlinear dynamic behaviors including bifurcation and chaos of a truss spar platform. In view of the mutual influences between the heave and the pitch mode... This paper presents the results from a numerical study on the nonlinear dynamic behaviors including bifurcation and chaos of a truss spar platform. In view of the mutual influences between the heave and the pitch modes, the coupled heave and pitch motion equations of the spar platform hull were established in the regular waves. In order to analyze the nonlinear motions of the platform, three-dimensional maximum Lyapunov exponent graphs and the bifurcation graphs were constructed, the Poincare maps and the power spectrums of the platform response were calculated. It was found that the platform motions are sensitive to wave fre- quency. With changing wave frequency, the platform undergoes complicated nonlinear motions, including 1/2 sub-harmonic motion, quasi-periodic motion and chaotic motion. When the wave frequency approaches the natural frequency of the heave mode of the platform, the platform moves with quasi-periodic motion and chaotic motional temately. For a certain range of wave frequencies, the platform moves with totally chaotic motion. The range of wave frequencies which leads to chaotic motion of the platform increases with increasing wave height. The three-dimensional maximum Lyapunov exponent graphs and the bifurcation graphs reveal the nonlinear motions of the spar platform under different wave conditions. 展开更多
关键词 truss spar platform coupled heave and pitch quasi-periodic motion chaotic motion 1/2 sub-harmonic motion maximum Lyapunov exponent bifurcation graph
下载PDF
Simplest Normal Forms of Generalized Neimark-Sacker Bifurcation 被引量:1
12
作者 丁玉梅 张琪昌 《Transactions of Tianjin University》 EI CAS 2009年第4期260-265,共6页
The normal forms of generalized Neimark-Sacker bifurcation are extensively studied using normal form theory of dynamic system. It is well known that if the normal forms of the generalized Neimark-Sacker bifurcation ar... The normal forms of generalized Neimark-Sacker bifurcation are extensively studied using normal form theory of dynamic system. It is well known that if the normal forms of the generalized Neimark-Sacker bifurcation are expressed in polar coordinates, then all odd order terms must, in general, remain in the normal forms. In this paper, five theorems are presented to show that the conventional Neimark-Sacker bifurcation can be further simplified. The simplest normal forms of generalized Neimark-Sacker bifurcation are calculated. Based on the conventional normal form, using appropriate nonlinear transformations, it is found that the generalized Neimark-Sacker bifurcation has at most two nonlinear terms remaining in the amplitude equations of the simplest normal forms up to any order. There are two kinds of simplest normal forms. Their algebraic expression formulas of the simplest normal forms in terms of the coefficients of the generalized Neimark-Sacker bifurcation systems are given. 展开更多
关键词 generalized Neimark-Sacker bifurcation simplest normal form near identity nonlinear transformations
下载PDF
Bifurcation of Periodic Motion of Rigid Rotor System Supported by Angular Contact Ball Bearings
13
作者 崔立 刘长利 郑建荣 《Transactions of Tianjin University》 EI CAS 2011年第6期404-410,共7页
Rotor systems supported by angular contact ball bearings are complicated due to nonlinear Hertzian contact force. In this paper, nonlinear bearing forces of ball bearing under five-dimensional loads are given, and 5-D... Rotor systems supported by angular contact ball bearings are complicated due to nonlinear Hertzian contact force. In this paper, nonlinear bearing forces of ball bearing under five-dimensional loads are given, and 5-DOF dynamic equations of a rigid rotor ball bearing system are established. Continuation-shooting algorithm for periodic solutions of the nonlinear non-autonomous dynamic system and Floquet multipliers of the system are used. Furthermore, the bifurcation and stability of the periodic motion of the system in different parametric domains are also studied. Results show that the bifurcation and stability of period-1 motion vary with structural parameters and operating parameters of the rigid rotor ball bearing system. Avoidance of unbalanced force and bending moment, appropriate initial contact angle, axial load and damping factor help enhance the unstable rotating speed of period-1 motion. 展开更多
关键词 angular contact ball bearing rigid rotor system BIFURCATION periodic motion continuation-shooting algorithm
下载PDF
Zero-Hopf bifurcation for an infection-age structured epidemic model with a nonlinear incidence rate 被引量:1
14
作者 LIU ZhiHua YUAN Rong 《Science China Mathematics》 SCIE CSCD 2017年第8期1371-1398,共28页
An infection-age structured epidemic model with a nonlinear incidence rate is investigated.We formulate the model as an abstract non-densely defined Cauchy problem and derive the condition which guarantees the existen... An infection-age structured epidemic model with a nonlinear incidence rate is investigated.We formulate the model as an abstract non-densely defined Cauchy problem and derive the condition which guarantees the existence and uniqueness for positive age-dependent equilibrium of the model.By analyzing the associated characteristic transcendental equation and applying the normal form theory presented recently for non-densely defined semilinear equations,we show that the SIR(susceptible-infected-recovered)epidemic model undergoes Zero-Hopf bifurcation at the positive equilibrium which is the main result of this paper. 展开更多
关键词 infection-age structured EPIDEMIC non-densely defined stability normal form zero-Hopf bifurcation
原文传递
Bifurcation analysis on full annular rub of a nonlinear rotor system 被引量:9
15
作者 ZHANG HuaBiao CHEN YuShu 《Science China(Technological Sciences)》 SCIE EI CAS 2011年第8期1977-1985,共9页
In this paper, analytical and numerical studies are carried out on the full annular rub motions of a nonlinear Jeffcott rotor. Transition sets of the synchronous full annular rub are given with the help of averaging m... In this paper, analytical and numerical studies are carried out on the full annular rub motions of a nonlinear Jeffcott rotor. Transition sets of the synchronous full annular rub are given with the help of averaging method and constraint bifurcation theory to discuss the effects of system parameters on jump phenomena. Routh-Hurwitz criteria are employed to analyze the stability of synchronous full annular rub solution and determine the boundaries of static and Hopf bifurcations. Finally, the response and onset condition of reverse dry whip are investigated numerically, and at the same time, the influences of rotor parameters and rotation speed on the characteristics of the rotor response are investigated. 展开更多
关键词 nonlinear rotor dynamics synchronous full annular rub constraint bifurcation stability of motion reverse dry whip
原文传递
Triad mode resonant interactions in suspended cables
16
作者 Tie Ding Guo Hou Jun Kang +1 位作者 Lian Hua Wang Yue Yu Zhao 《Science China(Physics,Mechanics & Astronomy)》 SCIE EI CAS CSCD 2016年第3期75-88,共14页
A triad mode resonance, or three-wave resonance, is typical of dynamical systems with quadratic nonlinearities. Suspended cables are found to be rich in triad mode resonant dynamics. In this paper, modulation equation... A triad mode resonance, or three-wave resonance, is typical of dynamical systems with quadratic nonlinearities. Suspended cables are found to be rich in triad mode resonant dynamics. In this paper, modulation equations for cable's triad resonance are formulated by the multiple scale method. Dynamic conservative quantities, i.e., mode energy and Manley-Rowe relations, are then constructed. Equilibrium/dynamic solutions of the modulation equations are obtained, and full investigations into their stability and bifurcation characteristics are presented. Various bifurcation behaviors are detected in cable's triad resonant responses, such as saddle-node, Hopf, pitchfork and period-doubling bifurcations. Nonlinear behaviors, like jump and saturation phenomena, are also found in cable's responses. Based upon the bifurcation analysis, two interesting properties associated with activation of cable's triad resonance are also proposed, i.e., energy barrier and directional dependence. The first gives the critical amplitude of high-frequency mode to activate cable's triad resonance, and the second characterizes the degree of difficulty for activating cable's triad resonance in two opposite directions, i.e., with positive or negative internal detuning parameter. 展开更多
关键词 suspended cables triad mode interaction multiple scale method
原文传递
Pattern Formations in Heat Convection Problems
17
作者 Takaaki NISHIDA Yoshiaki TERAMOTO 《Chinese Annals of Mathematics,Series B》 SCIE CSCD 2009年第6期769-784,共16页
After Bénard's experiment in 1900, Rayleigh formulated heat convection problems by the Oberbeck-Boussinesq approximation in the horizontal strip domain in 1916. The pattern formations have been investigated by t... After Bénard's experiment in 1900, Rayleigh formulated heat convection problems by the Oberbeck-Boussinesq approximation in the horizontal strip domain in 1916. The pattern formations have been investigated by the bifurcation theory, weakly nonlinear theories and computational approaches. The boundary conditions for the velocity on the upper and lower boundaries are usually assumed as stress-free or no-slip. In the first part of this paper, some bifurcation pictures for the case of the stress-free on the upper boundary and the no-slip on the lower boundary are obtained. In the second part of this paper, the bifurcation pictures for the case of the stress-free on both boundaries by a computer assisted proof are verified. At last., Bénard-Marangoni heat convections for the ease of the free surface of the upper boundary are considered. 展开更多
关键词 Oberbeck-Boussinesq equation Heat convection Pattern formation Computer assisted proof
原文传递
Bifurcation and chaos of an airfoil with cubic nonlinearity in incompressible flow 被引量:2
18
作者 CHEN FangQi ZHOU LiangQiang CHEN YuShu 《Science China(Technological Sciences)》 SCIE EI CAS 2011年第8期1954-1965,共12页
Using a combination of analytical and numerical methods, the paper studies bifurcations and chaotic motions of a two-dimensional airfoil with cubic nonlinearity in incompressible flow. One type of critical points (cha... Using a combination of analytical and numerical methods, the paper studies bifurcations and chaotic motions of a two-dimensional airfoil with cubic nonlinearity in incompressible flow. One type of critical points (characterized by a negative eigenvalue, a simple zero eigenvalue and a pair of purely imaginary eigenvalues) for the bifurcation response equations is considered. With the aid of the normal form theory, the explicit expressions of the critical bifurcation lines leading to incipient and secondary bifurcations are obtained. The stability of the bifurcation solutions is also investigated. By using the undetermined coefficient method, the homoclinic orbit is found, and the uniform convergence of the homoclinic orbit series expansion is proved. It analytically demonstrates that there exists a homoclinic orbit joining the initial equilibrium point to itself, therefore Smale horseshoe chaos occurs for this system via Si'lnikov criterion. The system evolves into chaotic motion through period-doubling bifurcation, and is periodic again as the dimensionless airflow speed increases. Numerical simulations are also given, which confirm the analytical results. 展开更多
关键词 AIRFOIL BIFURCATION chaotic motion
原文传递
COMPLEXITY ANALYSIS OF NETWORK-BASED DYNAMICAL SYSTEMS
19
作者 Guofeng ZHANG Long WANG Tongwen CHEN 《Journal of Systems Science & Complexity》 SCIE EI CSCD 2011年第3期413-432,共20页
This paper investigates the nonlinear dynamics of network-based dynamical systems where network communication channels of finite data rates are inserted into the closed loops of the control systems. The authors analyz... This paper investigates the nonlinear dynamics of network-based dynamical systems where network communication channels of finite data rates are inserted into the closed loops of the control systems. The authors analyze the bifurcation and chaotic behavior of the non-smooth dynamical systems. The authors first prove that for almost all system parameters there are no periodic orbits. This result distinguishes this type of non-smooth dynamical systems from many others exhibiting border-collision bifurcations. Next, the authors show analytically that the chaotic sets are separated from the region containing the line segment of all fixed points with a finite distance. Finally, the authors employ a simple model to highlight that both the number of clients sharing a common network channel and fluctuations in the available network bandwidth have significant influence on the performance of such dynamical systems. 展开更多
关键词 BIFURCATION FEEDBACK network-based dynamical system non-convexity periodicity.
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部