This paper presents some recent works on the control of dynamic systems,which have certain complex properties caused by singularity of the nonlinear structures,structure^varyings, or evolution process etc. First, we c...This paper presents some recent works on the control of dynamic systems,which have certain complex properties caused by singularity of the nonlinear structures,structure^varyings, or evolution process etc. First, we consider the structure singularity of nonlinear control systems. It was revealed that the focus of researches on nonlinear control theory is shifting from regular systems to singular systems. The singularity of nonlinear systems causes certain complexity. Secondly, the switched systems are considered. For such systems the complexity is caused by the structure varying. We show that the switched systems have significant characteristics of complex systems. Finally, we investigate the evolution systems. The evolution structure makes complexity, and itself is a proper model for complex systems.展开更多
This paper investigates adaptive state feedback stabilization for a class of feedforward nonlinear systems with zero-dynamics, unknown linear growth rate and control coefficient. For design convenience, the state tran...This paper investigates adaptive state feedback stabilization for a class of feedforward nonlinear systems with zero-dynamics, unknown linear growth rate and control coefficient. For design convenience, the state transformation is first introduced and the new system is obtained. Then, the estimation law is constructed for the unknown control coefficient, and the state feedback controller is proposed with a gain updated on-line. By appropriate choice of the estimation law for the control coefficient and the dynamic gain, the states of the closed-loop system are globally bounded, and the state of the original system converges to zero. Finally, a simulation example is given to illustrate the correctness of the theoretical results.展开更多
基金This research is supported partly by key project of China G1998020308.
文摘This paper presents some recent works on the control of dynamic systems,which have certain complex properties caused by singularity of the nonlinear structures,structure^varyings, or evolution process etc. First, we consider the structure singularity of nonlinear control systems. It was revealed that the focus of researches on nonlinear control theory is shifting from regular systems to singular systems. The singularity of nonlinear systems causes certain complexity. Secondly, the switched systems are considered. For such systems the complexity is caused by the structure varying. We show that the switched systems have significant characteristics of complex systems. Finally, we investigate the evolution systems. The evolution structure makes complexity, and itself is a proper model for complex systems.
基金supported by the National Natural Science Foundations of China under Grant Nos.61104069,61325016,61273084,61374187 and 61473176Independent Innovation Foundation of Shandong University under Grant No.2012JC014
文摘This paper investigates adaptive state feedback stabilization for a class of feedforward nonlinear systems with zero-dynamics, unknown linear growth rate and control coefficient. For design convenience, the state transformation is first introduced and the new system is obtained. Then, the estimation law is constructed for the unknown control coefficient, and the state feedback controller is proposed with a gain updated on-line. By appropriate choice of the estimation law for the control coefficient and the dynamic gain, the states of the closed-loop system are globally bounded, and the state of the original system converges to zero. Finally, a simulation example is given to illustrate the correctness of the theoretical results.