传统的线性主动噪声控制算法在噪声信号或噪声通道呈现非线性特性的情况下控制效果不佳。核-滤波最小均方误差算法(Kernel Filtered x Least Mean Square,KFxLMS)通过将输入噪声信号映射到高维再生核希尔伯特空间,再用线性方法在高维空...传统的线性主动噪声控制算法在噪声信号或噪声通道呈现非线性特性的情况下控制效果不佳。核-滤波最小均方误差算法(Kernel Filtered x Least Mean Square,KFxLMS)通过将输入噪声信号映射到高维再生核希尔伯特空间,再用线性方法在高维空间中进行处理。然而,随着新噪声信号的输入,KFxLMS算法递增的核函数运算需要较高的成本。为进一步改进KFxLMS算法,本文提出了随机傅里叶特征核滤波最小均方误差算法(Random Fourier Feature-Kernel Filtered x Least Mean Square,RFF-KFxLMS)。在仿真实验部分讨论了算法的参数选择,给出了算法的计算耗时,并验证了提出的RFF-KFxLMS算法在非线性噪声通道情况下,针对不同频率分量的正弦噪声都能够达到理想的性能。展开更多
针对非线性有源噪声控制,提出一种基于通用勒让德滤波器及其对应的滤波x最小均方误差算法(General Legendre Filtered-X Least Mean Square,GLFXLMS)。通用勒让德滤波器具有正交性,可在[-1,1]区间逼近任何因果、时不变、有限记忆、连续...针对非线性有源噪声控制,提出一种基于通用勒让德滤波器及其对应的滤波x最小均方误差算法(General Legendre Filtered-X Least Mean Square,GLFXLMS)。通用勒让德滤波器具有正交性,可在[-1,1]区间逼近任何因果、时不变、有限记忆、连续、非线性系统。基于滤波X最小均方(Filtered-X Least Mean Square,FXLMS)算法架构推导通用勒让德滤波器对应的自适应GLFXLMS算法,并分析该算法的计算量,完成该方法与其他方法在不同非线性条件下的控制效果对比。实验结果表明,对于不同的非线性有源噪声控制模型,所提算法控制效果良好。展开更多
文摘传统的线性主动噪声控制算法在噪声信号或噪声通道呈现非线性特性的情况下控制效果不佳。核-滤波最小均方误差算法(Kernel Filtered x Least Mean Square,KFxLMS)通过将输入噪声信号映射到高维再生核希尔伯特空间,再用线性方法在高维空间中进行处理。然而,随着新噪声信号的输入,KFxLMS算法递增的核函数运算需要较高的成本。为进一步改进KFxLMS算法,本文提出了随机傅里叶特征核滤波最小均方误差算法(Random Fourier Feature-Kernel Filtered x Least Mean Square,RFF-KFxLMS)。在仿真实验部分讨论了算法的参数选择,给出了算法的计算耗时,并验证了提出的RFF-KFxLMS算法在非线性噪声通道情况下,针对不同频率分量的正弦噪声都能够达到理想的性能。
文摘针对非线性有源噪声控制,提出一种基于通用勒让德滤波器及其对应的滤波x最小均方误差算法(General Legendre Filtered-X Least Mean Square,GLFXLMS)。通用勒让德滤波器具有正交性,可在[-1,1]区间逼近任何因果、时不变、有限记忆、连续、非线性系统。基于滤波X最小均方(Filtered-X Least Mean Square,FXLMS)算法架构推导通用勒让德滤波器对应的自适应GLFXLMS算法,并分析该算法的计算量,完成该方法与其他方法在不同非线性条件下的控制效果对比。实验结果表明,对于不同的非线性有源噪声控制模型,所提算法控制效果良好。