期刊文献+
共找到487篇文章
< 1 2 25 >
每页显示 20 50 100
电力需求的非线性回归组合神经网络预测研究 被引量:11
1
作者 汪克亮 杨力 《计算机工程与应用》 CSCD 北大核心 2010年第28期225-227,共3页
电力需求同时具有典型的增长性和季节波动性二重趋势,从而显示出复杂的非线性组合特征。为了提高电力需求的预测精度,提出一种新的预测模型——非线性回归组合神经网络模型。该模型有效兼顾了非线性回归分析和人工神经网络的优点,与其... 电力需求同时具有典型的增长性和季节波动性二重趋势,从而显示出复杂的非线性组合特征。为了提高电力需求的预测精度,提出一种新的预测模型——非线性回归组合神经网络模型。该模型有效兼顾了非线性回归分析和人工神经网络的优点,与其他预测模型进行了比较,该模型明显提高了电力需求预测的精度。仿真实验表明了该模型用于电力需求预测的可行性和有效性。同时,该模型也可以作为其他类似季节型时间序列预测建模的有效工具。 展开更多
关键词 电力需求预测 非线性回归组合神经网络 二重趋势性
下载PDF
基于非线性自回归神经网络模型对生活垃圾产生量的预测
2
作者 朱远超 王晓燕 田光 《四川环境》 2024年第3期149-153,共5页
旨在建立生活垃圾产生量预测模型,更好的预测生活垃圾产生量,以便有序筹划生活垃圾处置设施和构建灵活的收运调配体系。方法采用非线性自回归神经网络(NAR),通过调整延迟阶数和隐含层神经元个数等模型参数,建立基于生活垃圾产生量的历... 旨在建立生活垃圾产生量预测模型,更好的预测生活垃圾产生量,以便有序筹划生活垃圾处置设施和构建灵活的收运调配体系。方法采用非线性自回归神经网络(NAR),通过调整延迟阶数和隐含层神经元个数等模型参数,建立基于生活垃圾产生量的历史时间序列预测模型。实验结果显示,NAR神经网络时间序列模型对于北京市生活垃圾产生量有较好的预测能力,当延迟阶数为5,隐含神经元个数为10时,预测模型测试集的r值为0.9717,平均绝对百分比误差为3.385%,均方根误差为5051.831 t/w,预测模型通过了残差序列非自相关检验,预测效果较好。结论表明针对生活垃圾产生量数据可以开展NAR神经网络模型非线性自回归预测,且可不用考虑其它相关影响因素数据的可获得性,具有一定的便利和实际应用意义。 展开更多
关键词 生活垃圾 预测模型 非线性回归 神经网络
下载PDF
基于多元非线性回归和BP神经网络模型对黄河水沙监测数据特征分析的比较
3
作者 孔豪杰 《浙江工商职业技术学院学报》 2024年第1期18-22,共5页
利用2016-2021年黄河水位、水流量和含沙量已有的历史数据,采用三次样条插值方法,可建立多元非线性回归和BP神经网络模型。比较两种模型的误差率,进而得到BP神经网络预测精度更高(平均误差率:0.1981)。这为预测含沙量提供可靠的依据,也... 利用2016-2021年黄河水位、水流量和含沙量已有的历史数据,采用三次样条插值方法,可建立多元非线性回归和BP神经网络模型。比较两种模型的误差率,进而得到BP神经网络预测精度更高(平均误差率:0.1981)。这为预测含沙量提供可靠的依据,也为监管机关制定合理有效的检测方案提供了有力的支持。 展开更多
关键词 三次样条插值 多元非线性回归 BP神经网络 误差率
下载PDF
基于非线性自适应回归神经网络的GPS/IMU组合导航方法 被引量:15
4
作者 邓天民 杨其芝 +1 位作者 方芳 岳云霞 《科学技术与工程》 北大核心 2019年第24期274-280,共7页
车道级高精度定位导航是智能网联汽车的基本配置,全球定位系统(globlal positioning system,GPS)/惯性测量单元(inertial meansurement unit,IMU)组合导航是高精度定位的关键技术之一。根据汽车行驶过程中高精度定位要求,提出了应用于... 车道级高精度定位导航是智能网联汽车的基本配置,全球定位系统(globlal positioning system,GPS)/惯性测量单元(inertial meansurement unit,IMU)组合导航是高精度定位的关键技术之一。根据汽车行驶过程中高精度定位要求,提出了应用于智能网联汽车的基于非线性自适应回归(nonlinear autoregressive exogenous,NARX)神经网络的GPS/IMU组合导航方法。首先,根据IMU传感器数据特性,建立了基于扩展卡尔曼滤波的惯性导航系统(inertial navigation system,INS)模型,其次,基于NARX神经网络,建立了GPS/INS组合定位训练和预测模型,然后,基于全球导航卫星系统(global navigation satellite system,GNSS)、实时动态差分技术(real-time kinematic,RTK)、INS等技术,设计了智能网联汽车RTK高精度定位数据采集实验系统,并收集了实验数据。最后,对NARX网络训练误差和GNSS信号长时间失效情况下定位预测误差进行了讨论与分析。实验结果表明,该方法在GNSS信号失效5 min情况下,定位预测误差在2.5 m以内,满足一般情况下,短、中、长隧道中智能网联汽车定位应用要求。 展开更多
关键词 智能网联汽车 车道级定位 非线性自适应回归神经网络 扩展卡尔曼滤波
下载PDF
基于不同优化准则和广义回归神经网络的风电功率非线性组合预测 被引量:25
5
作者 喻华 卢继平 +3 位作者 曾燕婷 段盼 刘加林 苟鑫 《高电压技术》 EI CAS CSCD 北大核心 2019年第3期1002-1008,共7页
为提高风电功率预测精度,提出一种基于不同优化准则和广义回归神经网络(GRNN)的风电功率非线性组合预测方法。首先,基于灰色关联度理论,筛选出综合灰色关联度大于0的单项预测模型。然后,利用筛选出的单项预测模型以平均绝对误差最小、... 为提高风电功率预测精度,提出一种基于不同优化准则和广义回归神经网络(GRNN)的风电功率非线性组合预测方法。首先,基于灰色关联度理论,筛选出综合灰色关联度大于0的单项预测模型。然后,利用筛选出的单项预测模型以平均绝对误差最小、平均相对误差最小和均方根误差最小为优化准则构建线性组合优化模型。最后,利用GRNN神经网络对基于不同优化准则的线性组合模型进行非线性组合,得到优化模型。以实测风电功率数据对所提方法进行验证,仿真结果表明:与各单项预测模型、线性组合模型相比,所提优化模型的整体预测精度高,证明了该方法的有效性和实用性。 展开更多
关键词 广义回归神经网络 优化准则 灰色关联度 非线性组合预测 优化模型
下载PDF
基于反向传播神经网络的卤水蒸发速率预测模型
6
作者 李志伟 付振海 +1 位作者 张志宏 李生廷 《无机盐工业》 CAS CSCD 北大核心 2024年第1期53-58,共6页
卤水的蒸发速率是盐田生产管理中的一个重要技术参数,通过搭建室外卤水蒸发实验装置,分析了辐照强度、风速、环境温度、相对湿度、卤水温度、卤水浓度与卤水蒸发速率的关系。利用反向传播(BP)神经网络,训练构建了卤水蒸发速率预测模型,... 卤水的蒸发速率是盐田生产管理中的一个重要技术参数,通过搭建室外卤水蒸发实验装置,分析了辐照强度、风速、环境温度、相对湿度、卤水温度、卤水浓度与卤水蒸发速率的关系。利用反向传播(BP)神经网络,训练构建了卤水蒸发速率预测模型,并与传统的应用回归方法构建的模型进行比较。结果表明,BP神经网络模型和非线性回归模型的决定系数R2分别为0.902和0.884,预测平均相对误差分别为15.723%和18.943%,BP神经网络模型的拟合效果和预测能力均优于非线性回归模型。说明应用BP神经网络构建卤水蒸发速率预测模型是可行的,能够实现蒸发速率的快速估测。 展开更多
关键词 卤水蒸发速率 定量分析 非线性回归 反向传播神经网络
下载PDF
灰色神经网络组合算法在复杂非线性预测中的应用 被引量:13
7
作者 章敬东 刘小辉 +1 位作者 邓飞其 刘永清 《计算机工程与应用》 CSCD 北大核心 2003年第12期56-58,共3页
IT人才需求预测是一个复杂的非线性过程,在回归法和相关分析法失效的情况下,组合运用灰色系统方法和神经网络算法,克服了数据缺乏、影响因子非线性程度高的困难,精确地预测了珠三角IT人才的需求总量,并推算出未来合理的IT人才需求结构。
关键词 非线性 复杂需求预测 灰色理论 神经网络算法 组合模型
下载PDF
基于人工神经网络及非线性回归的岩爆判据 被引量:14
8
作者 张光存 高谦 +1 位作者 杜聚强 李铿铿 《中南大学学报(自然科学版)》 EI CAS CSCD 北大核心 2013年第7期2977-2981,共5页
采用人工神经网络和非线性回归方法研究岩爆判据研究。首先利用人工神经网络对原始样本进行量化,然后对量化后的样本数据进行非线性回归分析,获得新的岩爆判据公式。研究结果表明:此岩爆判据公式具有较高的预测精度。
关键词 岩爆判据 人工神经网络 岩爆强度衡量值 非线性回归
下载PDF
基于多层局部回归神经网络的多变量非线性系统预测控制 被引量:13
9
作者 刘贺平 张兰玲 孙一康 《控制理论与应用》 EI CAS CSCD 北大核心 2001年第2期298-300,共3页
以罐式搅拌反应器为例 ,针对复杂多变量系统的强耦合性、非线性、时变性等问题 ,研究了多变量非线性系统的预测控制及改善控制性能的方法 .采用多层局部回归神经网络离线建立预测模型 ,以偏差补偿和模型修正相结合的方式对预测模型进行... 以罐式搅拌反应器为例 ,针对复杂多变量系统的强耦合性、非线性、时变性等问题 ,研究了多变量非线性系统的预测控制及改善控制性能的方法 .采用多层局部回归神经网络离线建立预测模型 ,以偏差补偿和模型修正相结合的方式对预测模型进行误差补偿 ,经在线校正用于预测控制 .通过对性能指标中的偏差项负指数加权 ,进一步改善预测控制性能 .仿真结果表明了控制算法的有效性 . 展开更多
关键词 多变量非线性系统 多层局部回归神经网络 预测控制 模型修正
下载PDF
基于人工神经网络的非线性回归 被引量:16
10
作者 王宜怀 王林 《计算机工程与应用》 CSCD 北大核心 2004年第12期79-82,共4页
探讨了人工神经网络在回归分析领域应用的理论基础,对基于人工神经网络的非线性回归进行了深入的实践分析。以BP网络为例给出了基于人工神经网络的非线性回归实例分析。结果表明利用人工神经网络进行非线性回归是一种良好的数据回归方法... 探讨了人工神经网络在回归分析领域应用的理论基础,对基于人工神经网络的非线性回归进行了深入的实践分析。以BP网络为例给出了基于人工神经网络的非线性回归实例分析。结果表明利用人工神经网络进行非线性回归是一种良好的数据回归方法,可以方便地应用于解决非线性回归问题。 展开更多
关键词 人工神经网络 非线性回归 理论基础 实践分析
下载PDF
广义回归神经网络在非线性系统建模中的应用 被引量:24
11
作者 周敏 李世玲 《计算机测量与控制》 CSCD 2007年第9期1189-1191,共3页
广义回归神经网络具有设计简单、收敛快等优势,因此在复杂非线性系统建模中得到了广泛应用;在简要介绍了广义回归神经网络的结构和算法的基础上,基于广义回归神经网络和均匀设计理论,提出了一种新的非线性系统稳健建模方法,并给出了仿... 广义回归神经网络具有设计简单、收敛快等优势,因此在复杂非线性系统建模中得到了广泛应用;在简要介绍了广义回归神经网络的结构和算法的基础上,基于广义回归神经网络和均匀设计理论,提出了一种新的非线性系统稳健建模方法,并给出了仿真算例;仿真结果表明,用文中提出的方法建立非线性系统预测模型,具有预测结果稳定、模型稳健性好等优点。 展开更多
关键词 广义回归神经网络 均匀设计 非线性系统 建模 稳健性
下载PDF
基于BP神经网络的非线性组合预测模型在粮食物流需求预测中的应用 被引量:15
12
作者 鹿应荣 杨印生 刘洪霞 《吉林大学学报(工学版)》 EI CAS CSCD 北大核心 2008年第S2期61-64,共4页
鉴于单项预测模型的局限性,在确定粮食物流需求量的基础上,建立了基于BP神经网络的非线性组合预测模型,并把这一模型应用于长春市粮食物流需求的预测。误差分析表明,该预测模型可以有效地提高粮食物流需求量的预测精度。
关键词 交通运输系统工程 粮食物流 需求预测 非线性组合预测模型 BP神经网络
下载PDF
基于广义回归神经网络的传感器非线性误差校正 被引量:7
13
作者 段松杰 张晓光 张闯志 《传感器与微系统》 CSCD 北大核心 2008年第12期14-16,共3页
介绍了径向基函数网络的函数逼近原理和方法,提出了一种基于广义回归神经网络(GRNN)的传感器非线性误差校正方法。通过Matlab的Network Toolbox(神经网络工具箱),GRNN训练程序实现了输出特性曲线逼近。仿真分析表明:GRNN能够很好地满足... 介绍了径向基函数网络的函数逼近原理和方法,提出了一种基于广义回归神经网络(GRNN)的传感器非线性误差校正方法。通过Matlab的Network Toolbox(神经网络工具箱),GRNN训练程序实现了输出特性曲线逼近。仿真分析表明:GRNN能够很好地满足传感器非线性拟合的要求,网络结构简单,收敛速度快。 展开更多
关键词 广义回归神经网络 传感器 非线性误差 径向基函数
下载PDF
基于回归神经网络的非线性时变系统辨识 被引量:9
14
作者 邹高峰 王正欧 《控制与决策》 EI CSCD 北大核心 2002年第5期517-521,共5页
为克服基于前馈神经网络的非线性时变系统辨识算法存在需预先估计系统输入输出滞后阶数的缺陷 ,提出一种基于回归神经网络的非线性时变系统的辨识算法。针对现有的回归网络学习算法大多采用梯度算法 ,收敛速度缓慢问题 ,提出一种具有快... 为克服基于前馈神经网络的非线性时变系统辨识算法存在需预先估计系统输入输出滞后阶数的缺陷 ,提出一种基于回归神经网络的非线性时变系统的辨识算法。针对现有的回归网络学习算法大多采用梯度算法 ,收敛速度缓慢问题 ,提出一种具有快速收敛性的扩展卡尔曼滤波学习算法 ,大大提高了学习收敛速度 ;并推导了一种基于单个神经元的局部化算法 ,减少了计算量。仿真实例证明 ,所提出的算法是有效的。 展开更多
关键词 回归神经网络 非线性时变系统 系统辨识 扩展卡尔曼滤波 人工神经网络
下载PDF
模糊神经网络非线性组合预测在铁路货运量预测中的应用 被引量:8
15
作者 刘婷婷 邓克涛 马昌喜 《铁道运输与经济》 北大核心 2008年第9期91-94,共4页
准确的铁路货运量预测关系到铁路运输的发展,为此提出模糊神经网络非线性组合预测模型,应用三次指数预测模型、灰色理论预测模型、多元回归预测模型的预测值作为模糊神经网络的测试样本数据库,输出样本为铁路货运量,并采用全局优化的粒... 准确的铁路货运量预测关系到铁路运输的发展,为此提出模糊神经网络非线性组合预测模型,应用三次指数预测模型、灰色理论预测模型、多元回归预测模型的预测值作为模糊神经网络的测试样本数据库,输出样本为铁路货运量,并采用全局优化的粒子群算法优化模糊神经网络的参数。仿真结果表明该模型能够取得比单项预测模型更高的精度。 展开更多
关键词 铁路货运量 预测 非线性组合 模糊神经网络
下载PDF
基于BP神经网络的非线性组合模型及其应用 被引量:4
16
作者 谢定松 薛桂玉 李民 《人民长江》 北大核心 2002年第7期36-37,42,共3页
由于采用最优权组合模型进行大坝安全监测观测资料分析时 ,有时会出现不符合实际的负权重。针对这一情况 ,采用基于BP神经网络的非线性组合模型 ,并进行实例计算。实例表明 ,基于BP神经网络的非线性组合模型是可行的和合理的 ,建立可信... 由于采用最优权组合模型进行大坝安全监测观测资料分析时 ,有时会出现不符合实际的负权重。针对这一情况 ,采用基于BP神经网络的非线性组合模型 ,并进行实例计算。实例表明 ,基于BP神经网络的非线性组合模型是可行的和合理的 ,建立可信的数学模型是作好组合模型的前提 ,基于BP神经网络的非线性组合模型拟合精度和预报效果都要优于最优权组合模型。 展开更多
关键词 BP神经网络 非线性组合模型 大坝 安全监测
下载PDF
基于深度神经网络的船舶系泊受灾预报研究
17
作者 张庆丰 陈明 +1 位作者 麻云平 李楷 《应用科技》 CAS 2024年第3期15-22,共8页
为避免船舶系泊于码头时遭受恶劣海况而发生的缆绳断裂等问题,通过深度神经网络建立了系泊受灾预测模型,来快速获得系泊船舶所有系泊缆绳的受力。模型输入特征数量为11个,涵盖风、浪、流、涌、船舶吃水及船舶系泊方式等基本参数,输出特... 为避免船舶系泊于码头时遭受恶劣海况而发生的缆绳断裂等问题,通过深度神经网络建立了系泊受灾预测模型,来快速获得系泊船舶所有系泊缆绳的受力。模型输入特征数量为11个,涵盖风、浪、流、涌、船舶吃水及船舶系泊方式等基本参数,输出特征为系泊系统中所有缆绳的受力。对模型的测试结果表明,相比于径向基神经网络,模型具有较高的预测精度,每组测试工况下的平均相对误差不超过10%。可将该模型用于在恶劣海况来临前对系泊系统的安全评估和风险分析,有助于相关人员及时采取应对措施,从而保证系泊系统的稳定性与可靠性。 展开更多
关键词 码头系泊 缆绳受力 非线性回归预测 深度神经网络 批正则化 K折交叉验证 径向基神经网络 安全评估
下载PDF
基于动态神经网络的一类非线性组合系统自适应控制 被引量:3
18
作者 刘恩东 井元伟 张嗣瀛 《东北大学学报(自然科学版)》 EI CAS CSCD 北大核心 2003年第12期1130-1133,共4页
针对一类非线性组合大系统,提出一种用动态神经网络逼近组合大系统的新型设计方法·首先由动态神经网络辨识非线性组合大系统,也就是利用动态神经网络逼近系统的未知项和互联项,其次设计控制器使实际系统的状态来跟踪参考模型的轨迹... 针对一类非线性组合大系统,提出一种用动态神经网络逼近组合大系统的新型设计方法·首先由动态神经网络辨识非线性组合大系统,也就是利用动态神经网络逼近系统的未知项和互联项,其次设计控制器使实际系统的状态来跟踪参考模型的轨迹·利用Lyapunov稳定性理论保证跟踪误差和其他信号是最终一致有界的·通过一个非线性系统例子的仿真证明这种设计方法的可行性·这种设计方法能够解决大系统中最为复杂的互联项问题,得出基于神经网络的自适应控制律· 展开更多
关键词 非线性组合大系统 动态神经网络 自适应控制 互联项 跟踪
下载PDF
基于动态神经网络的非线性组合系统自适应观测器 被引量:3
19
作者 刘恩东 井元伟 张嗣瀛 《控制与决策》 EI CSCD 北大核心 2004年第7期764-768,共5页
基于动态神经网络,对一类非线性组合系统提出一种观测器设计方法.在观测器设计中,充分考虑了神经网络逼近误差项对观测器性能的影响,增加了鲁棒控制项,并设计了相应的参数自适应律,以保证良好的观测性能.神经网络的连接权值在线调整,无... 基于动态神经网络,对一类非线性组合系统提出一种观测器设计方法.在观测器设计中,充分考虑了神经网络逼近误差项对观测器性能的影响,增加了鲁棒控制项,并设计了相应的参数自适应律,以保证良好的观测性能.神经网络的连接权值在线调整,无需离线学习.仿真结果表明了该方法的有效性. 展开更多
关键词 非线性组合系统 动态神经网络 自适应控制 观测器
下载PDF
非线性系统自适应回归神经网络控制 被引量:3
20
作者 谭思云 陈文清 周建中 《武汉理工大学学报》 CAS CSCD 2002年第3期18-20,共3页
针对参数不确定非线性系统 ,提出了基于回归神经网络的间接自适应控制律。控制器采用滑模变结构技术 ,能保证系统对外部扰动和参数不确定性的不敏感性 。
关键词 回归网络 滑动模态 不确定性 非线性系统 神经网络 自适应控制
下载PDF
上一页 1 2 25 下一页 到第
使用帮助 返回顶部