提出了一种软件系统的非线性有源自回归(Nonlinear AutoRegressive models with eXogenous Inputs,NARX)网络模型的老化检测方法。解决了目前软件老化方法未考虑多变量间关联性及历史数据的延迟影响的问题。该方法首先通过对实验采集的H...提出了一种软件系统的非线性有源自回归(Nonlinear AutoRegressive models with eXogenous Inputs,NARX)网络模型的老化检测方法。解决了目前软件老化方法未考虑多变量间关联性及历史数据的延迟影响的问题。该方法首先通过对实验采集的HelixServer-VOD服务器性能数据进行主成分分析,确定网络的输入维数,根据AIC准则确定最佳模型阶数,最终选取合理的网络模型结构;使用已知的未老化状态样本对NARX网络进行训练,建立系统的辨识模型;然后运用序贯概率比检验(Sequential Probability Ratio Test,SPRT)对NARX辨识模型的残差进行假设检验,判断系统的老化状态。实验分析表明,基于NARX网络模型的故障检测方法能够有效地应用于软件老化的检测。展开更多
提出了一种针对挖掘机液压系统的非线性有源自回归(nonlinear auto-regressive with extrainputs,NARX)网络模型的故障检测方法。NARX网络模型是一种将有源自回归(auto-regressivewith extra inputs,ARX)模型与神经网络相结合的系统建...提出了一种针对挖掘机液压系统的非线性有源自回归(nonlinear auto-regressive with extrainputs,NARX)网络模型的故障检测方法。NARX网络模型是一种将有源自回归(auto-regressivewith extra inputs,ARX)模型与神经网络相结合的系统建模方法,具有很强的非线性辨识能力。该方法首先选取合理的网络模型结构,并根据AIC准则确定最佳模型阶数;使用正常状态样本对NARX网络进行训练,建立系统的辨识模型;然后运用序贯概率比检验(sequential probability ratiotest,SPRT)对NARX辨识模型的残差进行假设检验,检测系统的故障状态。实验分析表明,基于NARX网络模型的故障检测方法能够有效地应用于挖掘机液压系统。展开更多
为了能够更加准确地实现地铁客流预测,提出了一种基于经验模态分解算法(empirical mode decomposition,EMD)优化非线性自回归(nonlinear auto regressive,NAR)动态神经网络的地铁客流量短时预测模型.分析地铁客流量数据后发现日客流量...为了能够更加准确地实现地铁客流预测,提出了一种基于经验模态分解算法(empirical mode decomposition,EMD)优化非线性自回归(nonlinear auto regressive,NAR)动态神经网络的地铁客流量短时预测模型.分析地铁客流量数据后发现日客流量具有一定的变化规律,为此使用了基于时间序列的NAR动态神经网络,该网络具有优秀的非线性动态拟合能力和反馈记忆的功能.结合EMD经验模态分解算法优化NAR动态神经网络预测模型,以此来减少预测误差,提高预测精度.结果显示,EMD-NAR神经网络组合预测模型适用于地铁客流的短时预测,预测精度可达93%,具有较好的应用价值.展开更多
文摘提出了一种软件系统的非线性有源自回归(Nonlinear AutoRegressive models with eXogenous Inputs,NARX)网络模型的老化检测方法。解决了目前软件老化方法未考虑多变量间关联性及历史数据的延迟影响的问题。该方法首先通过对实验采集的HelixServer-VOD服务器性能数据进行主成分分析,确定网络的输入维数,根据AIC准则确定最佳模型阶数,最终选取合理的网络模型结构;使用已知的未老化状态样本对NARX网络进行训练,建立系统的辨识模型;然后运用序贯概率比检验(Sequential Probability Ratio Test,SPRT)对NARX辨识模型的残差进行假设检验,判断系统的老化状态。实验分析表明,基于NARX网络模型的故障检测方法能够有效地应用于软件老化的检测。
文摘提出了一种针对挖掘机液压系统的非线性有源自回归(nonlinear auto-regressive with extrainputs,NARX)网络模型的故障检测方法。NARX网络模型是一种将有源自回归(auto-regressivewith extra inputs,ARX)模型与神经网络相结合的系统建模方法,具有很强的非线性辨识能力。该方法首先选取合理的网络模型结构,并根据AIC准则确定最佳模型阶数;使用正常状态样本对NARX网络进行训练,建立系统的辨识模型;然后运用序贯概率比检验(sequential probability ratiotest,SPRT)对NARX辨识模型的残差进行假设检验,检测系统的故障状态。实验分析表明,基于NARX网络模型的故障检测方法能够有效地应用于挖掘机液压系统。
文摘为了能够更加准确地实现地铁客流预测,提出了一种基于经验模态分解算法(empirical mode decomposition,EMD)优化非线性自回归(nonlinear auto regressive,NAR)动态神经网络的地铁客流量短时预测模型.分析地铁客流量数据后发现日客流量具有一定的变化规律,为此使用了基于时间序列的NAR动态神经网络,该网络具有优秀的非线性动态拟合能力和反馈记忆的功能.结合EMD经验模态分解算法优化NAR动态神经网络预测模型,以此来减少预测误差,提高预测精度.结果显示,EMD-NAR神经网络组合预测模型适用于地铁客流的短时预测,预测精度可达93%,具有较好的应用价值.