The nonlinear analysis of pounding between bridge deck segments subjected to multi-support excitations and multi-dimensional earthquake motion was performed.A novel bottom rigid element(BRE)method of the current displ...The nonlinear analysis of pounding between bridge deck segments subjected to multi-support excitations and multi-dimensional earthquake motion was performed.A novel bottom rigid element(BRE)method of the current displacement input model for structural seismic analysis under the multi-support excitations was used to calculate structural dynamic response.In the analysis,pounding between adjacent deck segments was considered.The seismic response of a multi-span bridge subjected to the multi-support excitation,considering not only the traveling-wave effect and partial coherence effect,but also the seismic non-stationary characteristics of multi-support earthquake motion,was simulated using finite element method(FEM).Meanwhile,the seismic response of the bridge under uniform earthquake was also analyzed.Finally,comparative analysis was conducted and some calculation results were shown for pounding effect,under multi-dimensional and multi-support earthquake motion,when performing seismic response analysis of multi-span bridge.Compared with the case of uniform/multi-support/multi-support and multi-dimensional earthquake input,the maximum values of pounding force in the case of multi-support and multi-dimensional earthquake input increase by about 5 8 times;the absolute value of bottom moment and shear force of piers increase by about50%600%and 23.1%900%,respectively.A conclusion can be given that it is very necessary to consider the pounding effect under multi-dimensional and multi-support earthquake motion while performing seismic response analysis of multi-span bridge.展开更多
In present paper application of Endurance Time Analysis (ETA) method in nonlinear seismic assessment of steel concentrically braced frames is studied. In this method structure is subjected to a set of predesigned in...In present paper application of Endurance Time Analysis (ETA) method in nonlinear seismic assessment of steel concentrically braced frames is studied. In this method structure is subjected to a set of predesigned increasing acceleration functions and various responses of the structure are recorded during synthetic seismic excitation. The averages of maximum values for various responses in Nonlinear Time-History Analyses (NTHA) extracted from real ground motions are expected to be close to those obtained from ETA up to equivalent target time. For this purpose a set of 9, 11, 13 and 15 stories steel frames were designed and plastic hinge method was selected as source of nonlinearity in all cases. Responses were compared based on interstory drift ratio and story shear in two methods and results show satisfactory consistency between two methods. Finally, it was concluded that the ETA method can be used as alternative method in nonlinear seismic analysis of concentrically braced steel frames.展开更多
基金Project(51078242)supported by the National Natural Science Foundation of China
文摘The nonlinear analysis of pounding between bridge deck segments subjected to multi-support excitations and multi-dimensional earthquake motion was performed.A novel bottom rigid element(BRE)method of the current displacement input model for structural seismic analysis under the multi-support excitations was used to calculate structural dynamic response.In the analysis,pounding between adjacent deck segments was considered.The seismic response of a multi-span bridge subjected to the multi-support excitation,considering not only the traveling-wave effect and partial coherence effect,but also the seismic non-stationary characteristics of multi-support earthquake motion,was simulated using finite element method(FEM).Meanwhile,the seismic response of the bridge under uniform earthquake was also analyzed.Finally,comparative analysis was conducted and some calculation results were shown for pounding effect,under multi-dimensional and multi-support earthquake motion,when performing seismic response analysis of multi-span bridge.Compared with the case of uniform/multi-support/multi-support and multi-dimensional earthquake input,the maximum values of pounding force in the case of multi-support and multi-dimensional earthquake input increase by about 5 8 times;the absolute value of bottom moment and shear force of piers increase by about50%600%and 23.1%900%,respectively.A conclusion can be given that it is very necessary to consider the pounding effect under multi-dimensional and multi-support earthquake motion while performing seismic response analysis of multi-span bridge.
文摘In present paper application of Endurance Time Analysis (ETA) method in nonlinear seismic assessment of steel concentrically braced frames is studied. In this method structure is subjected to a set of predesigned increasing acceleration functions and various responses of the structure are recorded during synthetic seismic excitation. The averages of maximum values for various responses in Nonlinear Time-History Analyses (NTHA) extracted from real ground motions are expected to be close to those obtained from ETA up to equivalent target time. For this purpose a set of 9, 11, 13 and 15 stories steel frames were designed and plastic hinge method was selected as source of nonlinearity in all cases. Responses were compared based on interstory drift ratio and story shear in two methods and results show satisfactory consistency between two methods. Finally, it was concluded that the ETA method can be used as alternative method in nonlinear seismic analysis of concentrically braced steel frames.