期刊文献+
共找到20篇文章
< 1 >
每页显示 20 50 100
基于指数函数展开法构造非线性差分微分方程新的精确解 被引量:4
1
作者 套格图桑 斯仁道尔吉 李姝敏 《内蒙古大学学报(自然科学版)》 CAS CSCD 北大核心 2010年第4期361-367,共7页
以双曲正切函数展开法、Jacobi椭圆函数展开法和试探函数法为基础,给出指数函数展开法,借助符号计算系统Mathematica,构造了一般格子方程和(2+1)维Toda格子方程等非线性差分微分方程新的精确解,其中包括精确孤立波解.该方法在构造非线... 以双曲正切函数展开法、Jacobi椭圆函数展开法和试探函数法为基础,给出指数函数展开法,借助符号计算系统Mathematica,构造了一般格子方程和(2+1)维Toda格子方程等非线性差分微分方程新的精确解,其中包括精确孤立波解.该方法在构造非线性差分微分方程精确解领域具有普遍意义. 展开更多
关键词 指数函数展开法 非线性差分微分方程 精确解 孤立波解
下载PDF
用Riccati方程构造非线性差分微分方程新的精确解 被引量:11
2
作者 套格图桑 斯仁道尔吉 《物理学报》 SCIE EI CAS CSCD 北大核心 2009年第9期5894-5902,共9页
把Riccati方程应用到非线性差分微分方程求解领域,并相结合与一种函数变换,借助符号计算系统Mathematica构造了修正的Volterra方程和一般格子方程新的精确孤立波解和三角函数解.
关键词 RICCATI方程 函数变换 非线性差分微分方程 孤立波解
原文传递
非线性差分-微分方程的显示精确解 被引量:7
3
作者 李姝敏 斯仁道尔吉 《内蒙古大学学报(自然科学版)》 CAS CSCD 北大核心 2008年第3期251-256,共6页
将广义投影Riccati方程法应用于求解非线性差分-微分方程,并在符号计算机系统Maple帮助下得到了离散(2+1)维Toda lattice方程和离散mKdV lattice方程一些新的精确解,其中包括双曲函数解和三角函数解.
关键词 非线性差分-微分方程 RICCATI方程 非线性离散(2+1)维Toda lattice方程 非线性离散mKdV lattice方程 精确解
下载PDF
广义Riccati方程有理展开法在非线性差分-微分方程中的应用 被引量:5
4
作者 陈向华 李姝敏 《内蒙古大学学报(自然科学版)》 CAS CSCD 北大核心 2009年第2期143-148,共6页
将广义Riccati方程有理展开法应用于求解非线性差分-微分方程.并在符号计算机系统Maple的帮助下,以离散的非线性mKdV lattice方程和离散的非线性(2+1)维Toda lattice方程为例,得到了一些新的精确解,其中包括双曲函数解和三角函数解.
关键词 非线性差分-微分方程Riccati方程 离散的非线性mKdV lattice方程 离散的非线性(2+1)维Toda lattice方程 精确解
下载PDF
推广的Riccati方程法构造非线性差分-微分方程的精确解 被引量:1
5
作者 李姝敏 田强 《内蒙古大学学报(自然科学版)》 CAS CSCD 北大核心 2011年第4期376-382,共7页
将推广的Riccati方程法应用于求解非线性差分-微分方程求解领域.并在符号计算机系统Maple的帮助下,以离散的非线性(2+1)-维Toda lattice方程为应用实例,构造了该方程的一些新精确解,其中包括有理形式的双曲函数解和有理形式的三角函数... 将推广的Riccati方程法应用于求解非线性差分-微分方程求解领域.并在符号计算机系统Maple的帮助下,以离散的非线性(2+1)-维Toda lattice方程为应用实例,构造了该方程的一些新精确解,其中包括有理形式的双曲函数解和有理形式的三角函数周期解. 展开更多
关键词 非线性差分-微分方程 推广的Riccati方程 离散的非线性(2+1)-维Toda LATTICE 方程 精确解
下载PDF
三Riccati方程的新展开法及其在差分-微分方程中的应用(英文) 被引量:2
6
作者 李姝敏 斯仁道尔吉 《内蒙古师范大学学报(自然科学汉文版)》 CAS 2008年第4期462-467,471,共7页
将三Riccati方程的新展开法应用于求解非线性差分-微分方程,借助符号计算系统Maple,得到了离散KdV方程和离散mKdVlattice方程的一些新的精确解,并具体给出了双曲函数解.
关键词 非线性差分-微分方程 Ricatti方程 离散KdV方程 非线性离散mKdV lattice方程 精确解
下载PDF
Volterra差分微分方程和KdV差分微分方程新的精确解 被引量:8
7
作者 套格图桑 斯仁道尔吉 《物理学报》 SCIE EI CAS CSCD 北大核心 2009年第9期5887-5893,共7页
辅助方程法和试探函数法为基础,给出函数变换与辅助方程相结合的一种方法,借助符号计算系统Mathematica构造了Volterra差分微分方程和KdV差分微分方程新的精确孤立波解和三角函数解.该方法也适合求解其他非线性差分微分方程的精确解.
关键词 辅助方程 函数变换 非线性差分微分方程 孤立波解
原文传递
修正的Volterra格子方程的精确解
8
作者 杨立波 《洛阳师范学院学报》 2013年第11期9-11,共3页
对G'/G展开法进行了扩展,并将该方法应用到非线性差分微分方程的求解领域,通过借助符号计算系统Mathematica,得到了修正的Volterra格子方程的多组含参的新的精确解,包括双曲函数解、三角函数解和有理函数解.
关键词 G’ G展开法 非线性差分微分方程 精确解
下载PDF
一般格子方程的Jacobi椭圆函数精确解 被引量:4
9
作者 李姝敏 高明 郭怀民 《内蒙古大学学报(自然科学版)》 CAS CSCD 北大核心 2012年第1期13-18,共6页
将推广的投影Riccati方程法应用到非线性差分-微分方程求解领域,并以一般格子方程为例,在符号计算系统Maple的帮助下,得到该方程一些新的Jacobi椭圆函数精确解.当m→1和m→0,所得的解将分别退化为双曲函数解和三角函数解.
关键词 非线性差分-微分方程 推广的投影Riccati方程 一般格子方程 精确解
下载PDF
非线性离散的Schrdinger方程的显示精确解 被引量:1
10
作者 李姝敏 高明 林晶 《阴山学刊(自然科学版)》 2011年第2期5-8,23,共5页
本文将广义投影Riccati方程法应用于求解非线性差分-微分方程.并在计算机符号系统Maple的帮助下给出了非线性离散的Schrdinger方程的一些新的精确解,其中包括双曲函数解和三角函数解.
关键词 非线性差分-微分方程 广义投影Riccati方程 非线性离散的Schrdinger方程 精确解
原文传递
Applications of Jacobi Elliptic Function Expansion Method for Nonlinear Differential-Difference Equations 被引量:9
11
作者 XUGui-Qiong LIZhi-Bin 《Communications in Theoretical Physics》 SCIE CAS CSCD 2005年第3期385-388,共4页
The Jacobi elliptic function expansion method is extended to derive the explicit periodic wave solutions for nonlinear differential-difference equations. Three well-known examples are chosen to illustrate the applicat... The Jacobi elliptic function expansion method is extended to derive the explicit periodic wave solutions for nonlinear differential-difference equations. Three well-known examples are chosen to illustrate the application of the Jacobi elliptic function expansion method. As a result, three types of periodic wave solutions including Jacobi elliptic sine function, Jacobi elliptic cosine function and the third elliptic function solutions are obtained. It is shown that the shock wave solutions and solitary wave solutions can be obtained at their limit condition. 展开更多
关键词 nonlinear differential-difference equation Jacobi elliptic function periodic wave solution
下载PDF
Exact Solutions Expressible in Rational Formal Hyperbolic and Elliptic Functions for Nonlinear Differential-Difference Equation 被引量:3
12
作者 BAI Cheng-Jie ZHAO Hong HAN Ji-Guang 《Communications in Theoretical Physics》 SCIE CAS CSCD 2008年第8期303-308,共6页
A new approach is presented by means of a new general ansitz and some relations among Jacobian elliptic functions, which enables one to construct more new exact solutions of nonlinear differential-difference equations... A new approach is presented by means of a new general ansitz and some relations among Jacobian elliptic functions, which enables one to construct more new exact solutions of nonlinear differential-difference equations. As an example, we apply this new method to Hybrid lattice, diseretized mKdV lattice, and modified Volterra lattice. As a result, many exact solutions expressible in rational formal hyperbolic and elliptic functions are conveniently obtained with the help of Maple. 展开更多
关键词 nonlinear differential-difference equations new approach exact solutions
下载PDF
Second-order difference scheme for a nonlinear model of wood drying process
13
作者 姜明杰 孙志忠 《Journal of Southeast University(English Edition)》 EI CAS 2006年第4期582-588,共7页
A numerical simulation for a model of wood drying process is considered. The model is given by a couple of nonlinear differential equations. One is a nonlinear parabolic equation and the other one is a nonlinear ordin... A numerical simulation for a model of wood drying process is considered. The model is given by a couple of nonlinear differential equations. One is a nonlinear parabolic equation and the other one is a nonlinear ordinary equation. A difference scheme is derived by the method of reduction of order. First, a new variable is introduced and the original problem is rewritten into a system of the first-order differential equations. Secondly, a difference scheme is constructed for the later problem. The solvability, stability and convergence of the difference scheme are proved by the energy method. The convergence order of the difference scheme is secondorder both in time and in space. A prior error estimate is put forward. The new variable is put aside to reduce the computational cost. A numerical example testifies the theoretical result. 展开更多
关键词 wood drying process model nonlinear differential equation difference scheme method of reduction of order STABILITY CONVERGENCE
下载PDF
Explicit Solutions for Generalized (2+1)-Dimensional Nonlinear Zakharov-Kuznetsov Equation 被引量:9
14
作者 孙峪怀 马志民 李燕 《Communications in Theoretical Physics》 SCIE CAS CSCD 2010年第9期397-400,共4页
The exact solutions of the generalized (2+1)-dimensional nonlinear Zakharov-Kuznetsov (Z-K) equationare explored by the method of the improved generalized auxiliary differential equation.Many explicit analytic solutio... The exact solutions of the generalized (2+1)-dimensional nonlinear Zakharov-Kuznetsov (Z-K) equationare explored by the method of the improved generalized auxiliary differential equation.Many explicit analytic solutionsof the Z-K equation are obtained.The methods used to solve the Z-K equation can be employed in further work toestablish new solutions for other nonlinear partial differential equations. 展开更多
关键词 generalized nonlinear Zakharov-Kuznetsov equation improved generalized auxiliary differentialequation and exact solutions
下载PDF
一般格子方程新的无穷序列精确解 被引量:4
15
作者 套格图桑 《物理学报》 SCIE EI CAS CSCD 北大核心 2010年第10期6712-6718,共7页
为了获得非线性差分微分方程的无穷序列精确解,引入一种双曲函数型辅助方程,并给出该方程解的Bcklund变换和解的非线性叠加公式.在此基础上,利用辅助方程与函数变换相结合的方法,借助符号计算系统Mathematica,用一般格子方程为应用实... 为了获得非线性差分微分方程的无穷序列精确解,引入一种双曲函数型辅助方程,并给出该方程解的Bcklund变换和解的非线性叠加公式.在此基础上,利用辅助方程与函数变换相结合的方法,借助符号计算系统Mathematica,用一般格子方程为应用实例,获得了无穷序列精确解。 展开更多
关键词 非线性差分微分方程 函数变换 双曲函数型辅助方程 无穷序列精确解
原文传递
广义Riccati方程法构造一般格子方程的新的精确解
16
作者 李姝敏 丁万龙 《阴山学刊(自然科学版)》 2011年第4期5-8,共4页
本文将广义Riccati方程法应用于求解非线性差分-微分方程.并在符号计算机系统Maple的帮助下,构造一般格子方程的双曲函数解和三角函数周期解.
关键词 非线性差分-微分方程 广义Riccati方程 一般格子方程 精确解
原文传递
Jacobi椭圆函数构造mKdV Lattice方程的精确解 被引量:1
17
作者 张静 《阴山学刊(自然科学版)》 2011年第4期22-25,共4页
本文基于椭圆函数展开法和tanh函数法,将Jacobi椭圆函数的分式型展开法应用于非线性差分-微分方程,并以非线性离散的mKdV lattice方程为例,借助于符号计算系统Maple,给出了该方程更多的椭圆函数解及退化后的双曲函数解和三角函数解.
关键词 非线性差分-微分方程 JACOBI椭圆函数展开法 非线性离散的mKdV lattice方程 精确解
原文传递
Optimal l~∞ error estimates of finite difference methods for the coupled Gross-Pitaevskii equations in high dimensions 被引量:11
18
作者 WANG TingChun ZHAO XiaoFei 《Science China Mathematics》 SCIE 2014年第10期2189-2214,共26页
Due to the difficulty in obtaining the a priori estimate,it is very hard to establish the optimal point-wise error bound of a finite difference scheme for solving a nonlinear partial differential equation in high dime... Due to the difficulty in obtaining the a priori estimate,it is very hard to establish the optimal point-wise error bound of a finite difference scheme for solving a nonlinear partial differential equation in high dimensions(2D or 3D).We here propose and analyze finite difference methods for solving the coupled GrossPitaevskii equations in two dimensions,which models the two-component Bose-Einstein condensates with an internal atomic Josephson junction.The methods which we considered include two conservative type schemes and two non-conservative type schemes.Discrete conservation laws and solvability of the schemes are analyzed.For the four proposed finite difference methods,we establish the optimal convergence rates for the error at the order of O(h^2+τ~2)in the l~∞-norm(i.e.,the point-wise error estimates)with the time stepτand the mesh size h.Besides the standard techniques of the energy method,the key techniques in the analysis is to use the cut-off function technique,transformation between the time and space direction and the method of order reduction.All the methods and results here are also valid and can be easily extended to the three-dimensional case.Finally,numerical results are reported to confirm our theoretical error estimates for the numerical methods. 展开更多
关键词 coupled Gross-Pitaevskii equations finite difference method SOLVABILITY conservation laws pointwise convergence optimal error estimates
原文传递
Transient flow control for an artificial open channel based on finite difference method 被引量:4
19
作者 SHANG YiZi LIU RongHua +2 位作者 LI TieJian ZHANG Cheng WANG GuangQian 《Science China(Technological Sciences)》 SCIE EI CAS 2011年第4期781-792,共12页
The particular challenges of modeling control systems for the middle route of the south-to-north water transfer project are illustrated.Open channel dynamics are approximated by well-known Saint-Venant nonlinear parti... The particular challenges of modeling control systems for the middle route of the south-to-north water transfer project are illustrated.Open channel dynamics are approximated by well-known Saint-Venant nonlinear partial differential equations.For better control purpose,the finite difference method is used to discretize the Saint-Venant equations to form the state space model of channel system.To avoid calculation divergence and improve control stability,balanced model reduction together with poles placement procedure is proposed to develop the control scheme.The entire process to obtain this scheme is described in this paper,important application issue is considered as well.Experimental results show the adopted techniques are properly used in the control scheme design,and the system is able to drive the discharge to the demanded set point or maintain it around a reasonable range even if comes across big withdrawals. 展开更多
关键词 the south-to-north water transfer project control scheme Saint-Venant equations model reduction pole placement
原文传递
Stability and convergence of the variable directions difference scheme for one nonlinear two-dimensional model 被引量:1
20
作者 Temur Jangveladze Zurab Kiguradze +1 位作者 Mikheil Gagoshidze Maia Nikolishvili 《International Journal of Biomathematics》 2015年第5期31-51,共21页
The system of two-dimensional nonlinear partial differential equations is considered. This system describes the vein formation in meristematic tissues of young leaves. Variable directions difference scheme is construc... The system of two-dimensional nonlinear partial differential equations is considered. This system describes the vein formation in meristematic tissues of young leaves. Variable directions difference scheme is constructed and investigated. Absolute stability regarding space and time steps of scheme is shown. The convergence statement for the constructed scheme is proved. Rate of convergence is given. Various numerical experiments are carried out and results of some of them are considered in this paper. Comparison of numerical experiments with the results of the theoretical investigation is given too. 展开更多
关键词 Variable directions difference scheme nonlinear partial differential equations stability CONVERGENCE vein formation.
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部