The Jacobi elliptic function expansion method is extended to derive the explicit periodic wave solutions for nonlinear differential-difference equations. Three well-known examples are chosen to illustrate the applicat...The Jacobi elliptic function expansion method is extended to derive the explicit periodic wave solutions for nonlinear differential-difference equations. Three well-known examples are chosen to illustrate the application of the Jacobi elliptic function expansion method. As a result, three types of periodic wave solutions including Jacobi elliptic sine function, Jacobi elliptic cosine function and the third elliptic function solutions are obtained. It is shown that the shock wave solutions and solitary wave solutions can be obtained at their limit condition.展开更多
A new approach is presented by means of a new general ansitz and some relations among Jacobian elliptic functions, which enables one to construct more new exact solutions of nonlinear differential-difference equations...A new approach is presented by means of a new general ansitz and some relations among Jacobian elliptic functions, which enables one to construct more new exact solutions of nonlinear differential-difference equations. As an example, we apply this new method to Hybrid lattice, diseretized mKdV lattice, and modified Volterra lattice. As a result, many exact solutions expressible in rational formal hyperbolic and elliptic functions are conveniently obtained with the help of Maple.展开更多
A numerical simulation for a model of wood drying process is considered. The model is given by a couple of nonlinear differential equations. One is a nonlinear parabolic equation and the other one is a nonlinear ordin...A numerical simulation for a model of wood drying process is considered. The model is given by a couple of nonlinear differential equations. One is a nonlinear parabolic equation and the other one is a nonlinear ordinary equation. A difference scheme is derived by the method of reduction of order. First, a new variable is introduced and the original problem is rewritten into a system of the first-order differential equations. Secondly, a difference scheme is constructed for the later problem. The solvability, stability and convergence of the difference scheme are proved by the energy method. The convergence order of the difference scheme is secondorder both in time and in space. A prior error estimate is put forward. The new variable is put aside to reduce the computational cost. A numerical example testifies the theoretical result.展开更多
The exact solutions of the generalized (2+1)-dimensional nonlinear Zakharov-Kuznetsov (Z-K) equationare explored by the method of the improved generalized auxiliary differential equation.Many explicit analytic solutio...The exact solutions of the generalized (2+1)-dimensional nonlinear Zakharov-Kuznetsov (Z-K) equationare explored by the method of the improved generalized auxiliary differential equation.Many explicit analytic solutionsof the Z-K equation are obtained.The methods used to solve the Z-K equation can be employed in further work toestablish new solutions for other nonlinear partial differential equations.展开更多
Due to the difficulty in obtaining the a priori estimate,it is very hard to establish the optimal point-wise error bound of a finite difference scheme for solving a nonlinear partial differential equation in high dime...Due to the difficulty in obtaining the a priori estimate,it is very hard to establish the optimal point-wise error bound of a finite difference scheme for solving a nonlinear partial differential equation in high dimensions(2D or 3D).We here propose and analyze finite difference methods for solving the coupled GrossPitaevskii equations in two dimensions,which models the two-component Bose-Einstein condensates with an internal atomic Josephson junction.The methods which we considered include two conservative type schemes and two non-conservative type schemes.Discrete conservation laws and solvability of the schemes are analyzed.For the four proposed finite difference methods,we establish the optimal convergence rates for the error at the order of O(h^2+τ~2)in the l~∞-norm(i.e.,the point-wise error estimates)with the time stepτand the mesh size h.Besides the standard techniques of the energy method,the key techniques in the analysis is to use the cut-off function technique,transformation between the time and space direction and the method of order reduction.All the methods and results here are also valid and can be easily extended to the three-dimensional case.Finally,numerical results are reported to confirm our theoretical error estimates for the numerical methods.展开更多
The particular challenges of modeling control systems for the middle route of the south-to-north water transfer project are illustrated.Open channel dynamics are approximated by well-known Saint-Venant nonlinear parti...The particular challenges of modeling control systems for the middle route of the south-to-north water transfer project are illustrated.Open channel dynamics are approximated by well-known Saint-Venant nonlinear partial differential equations.For better control purpose,the finite difference method is used to discretize the Saint-Venant equations to form the state space model of channel system.To avoid calculation divergence and improve control stability,balanced model reduction together with poles placement procedure is proposed to develop the control scheme.The entire process to obtain this scheme is described in this paper,important application issue is considered as well.Experimental results show the adopted techniques are properly used in the control scheme design,and the system is able to drive the discharge to the demanded set point or maintain it around a reasonable range even if comes across big withdrawals.展开更多
The system of two-dimensional nonlinear partial differential equations is considered. This system describes the vein formation in meristematic tissues of young leaves. Variable directions difference scheme is construc...The system of two-dimensional nonlinear partial differential equations is considered. This system describes the vein formation in meristematic tissues of young leaves. Variable directions difference scheme is constructed and investigated. Absolute stability regarding space and time steps of scheme is shown. The convergence statement for the constructed scheme is proved. Rate of convergence is given. Various numerical experiments are carried out and results of some of them are considered in this paper. Comparison of numerical experiments with the results of the theoretical investigation is given too.展开更多
基金Project Supported by National Nature Science Foundation of China(10461006)the High Education Science ResearchProgramof Inner Mongolia(NJ02035)the Natural Science Foundation of Inner Mongolia(2004080201103)
基金the State Key Programme of Basic Research of China under,高等学校博士学科点专项科研项目
文摘The Jacobi elliptic function expansion method is extended to derive the explicit periodic wave solutions for nonlinear differential-difference equations. Three well-known examples are chosen to illustrate the application of the Jacobi elliptic function expansion method. As a result, three types of periodic wave solutions including Jacobi elliptic sine function, Jacobi elliptic cosine function and the third elliptic function solutions are obtained. It is shown that the shock wave solutions and solitary wave solutions can be obtained at their limit condition.
基金supported by National Natural Science Foundation of China and the Natural Science Foundation of Shandong Province
文摘A new approach is presented by means of a new general ansitz and some relations among Jacobian elliptic functions, which enables one to construct more new exact solutions of nonlinear differential-difference equations. As an example, we apply this new method to Hybrid lattice, diseretized mKdV lattice, and modified Volterra lattice. As a result, many exact solutions expressible in rational formal hyperbolic and elliptic functions are conveniently obtained with the help of Maple.
基金The National Natural Science Foundation of China (No10471023)
文摘A numerical simulation for a model of wood drying process is considered. The model is given by a couple of nonlinear differential equations. One is a nonlinear parabolic equation and the other one is a nonlinear ordinary equation. A difference scheme is derived by the method of reduction of order. First, a new variable is introduced and the original problem is rewritten into a system of the first-order differential equations. Secondly, a difference scheme is constructed for the later problem. The solvability, stability and convergence of the difference scheme are proved by the energy method. The convergence order of the difference scheme is secondorder both in time and in space. A prior error estimate is put forward. The new variable is put aside to reduce the computational cost. A numerical example testifies the theoretical result.
基金Supported by the National Natural Science Foundation of China under Grant No.10974160
文摘The exact solutions of the generalized (2+1)-dimensional nonlinear Zakharov-Kuznetsov (Z-K) equationare explored by the method of the improved generalized auxiliary differential equation.Many explicit analytic solutionsof the Z-K equation are obtained.The methods used to solve the Z-K equation can be employed in further work toestablish new solutions for other nonlinear partial differential equations.
基金supported by National Natural Science Foundation of China(Grant No.11201239)the Singapore A*STAR SERC PSF(Grant No.1321202067)
文摘Due to the difficulty in obtaining the a priori estimate,it is very hard to establish the optimal point-wise error bound of a finite difference scheme for solving a nonlinear partial differential equation in high dimensions(2D or 3D).We here propose and analyze finite difference methods for solving the coupled GrossPitaevskii equations in two dimensions,which models the two-component Bose-Einstein condensates with an internal atomic Josephson junction.The methods which we considered include two conservative type schemes and two non-conservative type schemes.Discrete conservation laws and solvability of the schemes are analyzed.For the four proposed finite difference methods,we establish the optimal convergence rates for the error at the order of O(h^2+τ~2)in the l~∞-norm(i.e.,the point-wise error estimates)with the time stepτand the mesh size h.Besides the standard techniques of the energy method,the key techniques in the analysis is to use the cut-off function technique,transformation between the time and space direction and the method of order reduction.All the methods and results here are also valid and can be easily extended to the three-dimensional case.Finally,numerical results are reported to confirm our theoretical error estimates for the numerical methods.
基金supported by the National Key Basic Research Program of China ("973" Progject) (Grant No. 2007CB714100)
文摘The particular challenges of modeling control systems for the middle route of the south-to-north water transfer project are illustrated.Open channel dynamics are approximated by well-known Saint-Venant nonlinear partial differential equations.For better control purpose,the finite difference method is used to discretize the Saint-Venant equations to form the state space model of channel system.To avoid calculation divergence and improve control stability,balanced model reduction together with poles placement procedure is proposed to develop the control scheme.The entire process to obtain this scheme is described in this paper,important application issue is considered as well.Experimental results show the adopted techniques are properly used in the control scheme design,and the system is able to drive the discharge to the demanded set point or maintain it around a reasonable range even if comes across big withdrawals.
文摘The system of two-dimensional nonlinear partial differential equations is considered. This system describes the vein formation in meristematic tissues of young leaves. Variable directions difference scheme is constructed and investigated. Absolute stability regarding space and time steps of scheme is shown. The convergence statement for the constructed scheme is proved. Rate of convergence is given. Various numerical experiments are carried out and results of some of them are considered in this paper. Comparison of numerical experiments with the results of the theoretical investigation is given too.