期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
基于非线性弹性地基梁的地下矿山充填开采覆岩移动规律研究
1
作者 何祥锐 邱贤阳 +4 位作者 史秀志 李小元 支伟 刘军 王远来 《黄金科学技术》 CSCD 北大核心 2024年第4期640-653,共14页
为了研究地下金属矿充填开采覆岩移动规律,以盘龙铅锌矿采场作为研究对象,建立非线性弹性地基梁力学模型,开展了不同采场结构参数、顶板厚度、原岩应力及充填体配比对于覆岩移动的影响研究。研究发现5个因素对于覆岩移动的影响从强到弱... 为了研究地下金属矿充填开采覆岩移动规律,以盘龙铅锌矿采场作为研究对象,建立非线性弹性地基梁力学模型,开展了不同采场结构参数、顶板厚度、原岩应力及充填体配比对于覆岩移动的影响研究。研究发现5个因素对于覆岩移动的影响从强到弱依次为充填体配比、采场结构参数、顶板厚度、原岩应力,提高充填体配比是控制覆岩位移的关键。通过采用Flac3D数值模拟方法计算不同充填体配比下覆岩移动值,将数值模拟分析结果与力学理论计算结果进行对比,二者差异率在3%~9%之间,从而验证了力学模型计算结果的可靠性。基于研究结果,提出地下矿山充填开采覆岩沉降控制技术,并将其应用于工业试验。研究成果可为类似矿山进行岩层控制提供借鉴。 展开更多
关键词 非线性弹性地基梁 数值模拟 岩层移动控制 充填开采 覆岩移动规律 位移监测
下载PDF
三种非线性弹性地基梁的变形和内力研究
2
作者 陈小亮 黄开志 王小荣 《江汉大学学报(自然科学版)》 2015年第6期571-576,共6页
研究地基反力与地基梁挠度成非线性关系对长、中、短3种类型地基梁的变形和内力的影响。基于实验数据,分别将地基反力与梁的挠度拟合成线性关系和三次多项式关系;然后采用有限差分法和牛顿迭代法编程,解出非线性弹性地基梁和经典线弹性... 研究地基反力与地基梁挠度成非线性关系对长、中、短3种类型地基梁的变形和内力的影响。基于实验数据,分别将地基反力与梁的挠度拟合成线性关系和三次多项式关系;然后采用有限差分法和牛顿迭代法编程,解出非线性弹性地基梁和经典线弹性地基梁的挠度、转角、剪力和弯矩随地基梁长度变化的曲线。算例计算表明:对于短梁,非线性弹性地基梁和经典线弹性Winkler地基梁的变形和内力一致;对于中、长梁,二者的相对误差可达到10%~20%,因此在实际工程中应尽量考虑地基反力与沉降的非线性关系;中等长度非线性弹性地基梁和线弹性地基梁变形和内力的相对误差随梁长度变化而变化,而对于长的地基梁二者的相对误差不随梁长度改变而变化。 展开更多
关键词 非线性弹性地基梁 有限差分法 挠度 转角 剪力 弯矩
下载PDF
Solving Nonlinear Differential Equation Governing on the Rigid Beams on Viscoelastic Foundation by AGM 被引量:1
3
作者 M. R. Akbari D. D. Ganji +1 位作者 A. K. Rostami M. Nimafar 《Journal of Marine Science and Application》 CSCD 2015年第1期30-38,共9页
In the present paper a vibrational differential equation governing on a rigid beam on viscoelastic foundation has been investigated. The nonlinear differential equation governing on this vibrating system is solved by ... In the present paper a vibrational differential equation governing on a rigid beam on viscoelastic foundation has been investigated. The nonlinear differential equation governing on this vibrating system is solved by a simple and innovative approach, which has been called Akbari-Ganji's method (AGM). AGM is a very suitable computational process and is usable for solving various nonlinear differential equations. Moreover, using AGM which solving a set of algebraic equations, complicated nonlinear equations can easily be solved without any mathematical operations. Also, the damping ratio and energy lost per cycle for three cycles have been investigated. Furthermore, comparisons have been made between the obtained results by numerical method (Runk45) and AGM. Results showed the high accuracy of AGM. The results also showed that by increasing the amount of initial amplitude of vibration (A), the value of damping ratio will be increased, and the energy lost per cycle decreases by increasing the number of cycle. It is concluded that AGM is a reliable and precise approach for solving differential equations. On the other hand, it is better to say that AGM is able to solve linear and nonlinear differential equations directly in most of the situations. This means that the final solution can be obtained without any dimensionless procedure Therefore, AGM can be considered as a significant progress in nonlinear sciences. 展开更多
关键词 nonlinear differential equation Akbari-Ganji's method(AGM) rigid beam viscoelastic foundation vibrating system damping ratio energy lost per cycle
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部