Support Vector Machines (SVMs) have been widely used in pattern recognition and have also drawn considerable interest in control areas. Based on a method of least squares SVM (LS-SVM) for multivariate function estimat...Support Vector Machines (SVMs) have been widely used in pattern recognition and have also drawn considerable interest in control areas. Based on a method of least squares SVM (LS-SVM) for multivariate function estimation, a generalized inverse system is developed for the linearization and decoupling control of a general nonlinear continuous system. The approach of inverse modelling via LS-SVM and parameters optimization using the Bayesian evidence framework is discussed in detail. In this paper, complex high-order nonlinear system is decoupled into a number of pseudo-linear Single Input Single Output (SISO) subsystems with linear dynamic components. The poles of pseudo-linear subsystems can be configured to desired positions. The proposed method provides an effective alternative to the controller design of plants whose accurate mathematical model is un- known or state variables are difficult or impossible to measure. Simulation results showed the efficacy of the method.展开更多
In this paper, recent results controling nonlinear systems with output tracking error constmints are applied to the design of new tracking controllers for magnetic bearings. The proposed controllers can force the roto...In this paper, recent results controling nonlinear systems with output tracking error constmints are applied to the design of new tracking controllers for magnetic bearings. The proposed controllers can force the rotor to track a bounded and sufficiently smooth reference trajectory asymptotically and guarantee non-contactedness betweea the rotor and the stator of the magnetic beadngs. Simulation results are included to illustrate the effectiveness of the propsed controllers.展开更多
An adaptive output feedback control was proposed to deal with a class of nonholonomic systems in chained form with strong nonlinear disturbances and drift terms. The objective was to design adaptive nonlinear output f...An adaptive output feedback control was proposed to deal with a class of nonholonomic systems in chained form with strong nonlinear disturbances and drift terms. The objective was to design adaptive nonlinear output feedback laws such that the closed-loop systems were globally asymptotically stable, while the estimated parameters remained bounded. The proposed systematic strategy combined input-state-scaling with backstepping technique. The adaptive output feedback controller was designed for a general case of uncertain chained system. Furthermore, one special case was considered. Simulation results demonstrate the effectiveness of the proposed controllers.展开更多
This paper studies anti-synchronization and its control between two coupled networks with nonlinear signal's connection and the inter-network actions. If anti-synchronization does not exist between two such networks,...This paper studies anti-synchronization and its control between two coupled networks with nonlinear signal's connection and the inter-network actions. If anti-synchronization does not exist between two such networks, adaptive controllers are designed to anti-synchronize them. Different node dynamics and nonidentical topological structures are considered and useful criteria for anti-synchronization between two networks are given. Numerical examples are presented to show the efficiency of our derived results.展开更多
With the combination of engine and two electric machines, the power split device allows higher efficiency of the engine. The operation modes of a power split HEV are analyzed, and the system dynamic model is establish...With the combination of engine and two electric machines, the power split device allows higher efficiency of the engine. The operation modes of a power split HEV are analyzed, and the system dynamic model is established for HEV forward simulation and controller design. Considering the fact that the operation modes of the HEV are event-driven and the system dynamics is continuous time-driven for each mode, the structure of the controller is built and described with the hybrid automaton control theory. In this control structure, the mode selection process is depicted by the finite state machine (FSM). The multi-mode switch controller is designed to realize power distribution. Furthermore, the vehicle mode operations are optimized, and the nonlinear model predictive control (NMPC) strategy is applied by implementing dynamic programming (DP) in the finite pre- diction horizon. Comparative simulation results demonstrate that the hybrid control structure is effective and feasible for HEV energy management design. The NMPC optimal strategy is superior in improving fuel economy.展开更多
This paper presents a robust nonlinear controller design approach for uncertain quadrotors to implement trajectory tracking missions. The quaternion representation is applied to describe the rotational dynamics in ord...This paper presents a robust nonlinear controller design approach for uncertain quadrotors to implement trajectory tracking missions. The quaternion representation is applied to describe the rotational dynamics in order to avoid the singularity problem existing in the Euler angle representation. A nonlinear robust controller is proposed, which consists of an attitude controller to stabilize the rotational motions and a position controller to control translational motions. The quadrotor dynamics involves uncertainties such as parameter uncertainties, nonlinearities, and external disturbances and their effects on closed-loop control system can be guaranteed to be restrained. Simulation results on the quadrotor demonstrate the effectiveness of the designed control approach.展开更多
A hierarchy-structured predictive controller is designed and analyzed for rotation motion dynamics of a generic hypersonic vehicle(GHV).This vehicle model has fast variability,is highly nonlinear,and includes uncertai...A hierarchy-structured predictive controller is designed and analyzed for rotation motion dynamics of a generic hypersonic vehicle(GHV).This vehicle model has fast variability,is highly nonlinear,and includes uncertain parameters.The controller contains two subsystems,the inner-fast-loop nonlinear generable predictive controller(NGPC)and the outer-slow-loop NGPC,both of which are designed by the closed-form optimal generable predictive control method.Thus,the heavy on-line computational burden in the classical predictive control method is avoided.The hierarchy structure of the control system decreases the relative degree of each subsystem and helps increase the dynamic response speed of the attitude controller.In order to improve the robustness of the control system,a feedback correction algorithm is proposed that corrects the calculation error between the predictive model and the real dynamic model.Simulation studies are conducted for the trimmed cruise conditions of an altitude of 33.5 km and Mach 15 to investigate the responses of the vehicle to the step commands of angle of attack,sideslip angle,and bank angle.The simulation studies demonstrate that the proposed controller is robust with respect to the parametric uncertainties and atmospheric disturbance,and meets the performance requirements of GHV with acceptable control inputs.展开更多
基金Project supported by the National Basic Research Program (973) of China (No. 2002CB312200), and the Hi-Tech Research and Devel-opment Program (863) of China (No. 2002AA412010)
文摘Support Vector Machines (SVMs) have been widely used in pattern recognition and have also drawn considerable interest in control areas. Based on a method of least squares SVM (LS-SVM) for multivariate function estimation, a generalized inverse system is developed for the linearization and decoupling control of a general nonlinear continuous system. The approach of inverse modelling via LS-SVM and parameters optimization using the Bayesian evidence framework is discussed in detail. In this paper, complex high-order nonlinear system is decoupled into a number of pseudo-linear Single Input Single Output (SISO) subsystems with linear dynamic components. The poles of pseudo-linear subsystems can be configured to desired positions. The proposed method provides an effective alternative to the controller design of plants whose accurate mathematical model is un- known or state variables are difficult or impossible to measure. Simulation results showed the efficacy of the method.
文摘In this paper, recent results controling nonlinear systems with output tracking error constmints are applied to the design of new tracking controllers for magnetic bearings. The proposed controllers can force the rotor to track a bounded and sufficiently smooth reference trajectory asymptotically and guarantee non-contactedness betweea the rotor and the stator of the magnetic beadngs. Simulation results are included to illustrate the effectiveness of the propsed controllers.
基金Project(60704005) supported by the National Natural Science Foundation of China Project(07ZR14119) supported by Natural Science Foundation of Shanghai Science and Technology Commission Project(2009AA04Z213) supported by the National High-Tech Research and Development Program of China
文摘An adaptive output feedback control was proposed to deal with a class of nonholonomic systems in chained form with strong nonlinear disturbances and drift terms. The objective was to design adaptive nonlinear output feedback laws such that the closed-loop systems were globally asymptotically stable, while the estimated parameters remained bounded. The proposed systematic strategy combined input-state-scaling with backstepping technique. The adaptive output feedback controller was designed for a general case of uncertain chained system. Furthermore, one special case was considered. Simulation results demonstrate the effectiveness of the proposed controllers.
基金Supported by the National Natural Science Foundation of China under Grant No.10872119Research Foundation of Hangzhou Dianzi University under Grant No.KYF075610032
文摘This paper studies anti-synchronization and its control between two coupled networks with nonlinear signal's connection and the inter-network actions. If anti-synchronization does not exist between two such networks, adaptive controllers are designed to anti-synchronize them. Different node dynamics and nonidentical topological structures are considered and useful criteria for anti-synchronization between two networks are given. Numerical examples are presented to show the efficiency of our derived results.
基金supported by the Priority Academic Program Development of Jiangsu Higher Education Institutions(PAPD)the National Natural Science Foundation of China(Grant Nos.51475213&51305167)the Scientific Research Innovation Projects of Jiangsu Province(Grant No.KYLX_1022)
文摘With the combination of engine and two electric machines, the power split device allows higher efficiency of the engine. The operation modes of a power split HEV are analyzed, and the system dynamic model is established for HEV forward simulation and controller design. Considering the fact that the operation modes of the HEV are event-driven and the system dynamics is continuous time-driven for each mode, the structure of the controller is built and described with the hybrid automaton control theory. In this control structure, the mode selection process is depicted by the finite state machine (FSM). The multi-mode switch controller is designed to realize power distribution. Furthermore, the vehicle mode operations are optimized, and the nonlinear model predictive control (NMPC) strategy is applied by implementing dynamic programming (DP) in the finite pre- diction horizon. Comparative simulation results demonstrate that the hybrid control structure is effective and feasible for HEV energy management design. The NMPC optimal strategy is superior in improving fuel economy.
基金supported by National High-Tech R&D Program of China (863 Program) (Grant No. 2012AA112201)National Natural Science Foundation of China (Grant No. 61503012)
文摘This paper presents a robust nonlinear controller design approach for uncertain quadrotors to implement trajectory tracking missions. The quaternion representation is applied to describe the rotational dynamics in order to avoid the singularity problem existing in the Euler angle representation. A nonlinear robust controller is proposed, which consists of an attitude controller to stabilize the rotational motions and a position controller to control translational motions. The quadrotor dynamics involves uncertainties such as parameter uncertainties, nonlinearities, and external disturbances and their effects on closed-loop control system can be guaranteed to be restrained. Simulation results on the quadrotor demonstrate the effectiveness of the designed control approach.
文摘A hierarchy-structured predictive controller is designed and analyzed for rotation motion dynamics of a generic hypersonic vehicle(GHV).This vehicle model has fast variability,is highly nonlinear,and includes uncertain parameters.The controller contains two subsystems,the inner-fast-loop nonlinear generable predictive controller(NGPC)and the outer-slow-loop NGPC,both of which are designed by the closed-form optimal generable predictive control method.Thus,the heavy on-line computational burden in the classical predictive control method is avoided.The hierarchy structure of the control system decreases the relative degree of each subsystem and helps increase the dynamic response speed of the attitude controller.In order to improve the robustness of the control system,a feedback correction algorithm is proposed that corrects the calculation error between the predictive model and the real dynamic model.Simulation studies are conducted for the trimmed cruise conditions of an altitude of 33.5 km and Mach 15 to investigate the responses of the vehicle to the step commands of angle of attack,sideslip angle,and bank angle.The simulation studies demonstrate that the proposed controller is robust with respect to the parametric uncertainties and atmospheric disturbance,and meets the performance requirements of GHV with acceptable control inputs.