A hierarchy of nonlinear lattice soliton equations is derived from a new discrete spectral problem. The Hamiltonian structure of the resulting hierarchy is constructed by using a trace identity formula. Moreover, a Da...A hierarchy of nonlinear lattice soliton equations is derived from a new discrete spectral problem. The Hamiltonian structure of the resulting hierarchy is constructed by using a trace identity formula. Moreover, a Darboux transformation is established with the help of gauge transformations of Lax pairs for the typical lattice soliton equations. The exact solutions are given by applying the Darboux transformation.展开更多
An improved nonlinear Schrodinger equation different from usual one of spinor Bose-Einstein condensates (BECs) in an optical lattice are obtained by taking into account a nonlinear term in the equation of motion for...An improved nonlinear Schrodinger equation different from usual one of spinor Bose-Einstein condensates (BECs) in an optical lattice are obtained by taking into account a nonlinear term in the equation of motion for probability amplitude of spins carefully. The elliptic function wave solutions of the model are found under specific boundary condition, for example, the two ends of the atomic chain are fixed. In the case of limit the elliptic function wave solutions are reduced into spin-wave-like or solitons.展开更多
基金Supported by the National Natural Science Foundation of China under Grant No.10771207
文摘A hierarchy of nonlinear lattice soliton equations is derived from a new discrete spectral problem. The Hamiltonian structure of the resulting hierarchy is constructed by using a trace identity formula. Moreover, a Darboux transformation is established with the help of gauge transformations of Lax pairs for the typical lattice soliton equations. The exact solutions are given by applying the Darboux transformation.
基金supported by National Natural Science Foundation of China under Grant No.10474022
文摘An improved nonlinear Schrodinger equation different from usual one of spinor Bose-Einstein condensates (BECs) in an optical lattice are obtained by taking into account a nonlinear term in the equation of motion for probability amplitude of spins carefully. The elliptic function wave solutions of the model are found under specific boundary condition, for example, the two ends of the atomic chain are fixed. In the case of limit the elliptic function wave solutions are reduced into spin-wave-like or solitons.