The uniform design method was adopted and the twenty-four groups of different geometric and physical pa-rameters were chosen. The finite element model was built. Comparisons between the simulation results and the test...The uniform design method was adopted and the twenty-four groups of different geometric and physical pa-rameters were chosen. The finite element model was built. Comparisons between the simulation results and the test re-sults prove that the simulation results are correct. The distribution of the temperature field of the chimney foundationwas analyzed. The multivariate linear regression of the hightest tomperature was performed on the inner wall of thechimney foundation by the numerical calculated results. The fitting property of the highest temperature with six influ-ence factors was obtained. A simple method for the calculation of the temperature field of the chimney foundation wasprovided.展开更多
Existing analytical methods of buried steel pipelines subjected to active strike-slip faults depended on a number of simplifications.To study the failure mechanism more accurately,a refined strain analytical methodolo...Existing analytical methods of buried steel pipelines subjected to active strike-slip faults depended on a number of simplifications.To study the failure mechanism more accurately,a refined strain analytical methodology was proposed,taking the nonlinear characteristics of soil-pipeline interaction and pipe steel into account.Based on the elastic-beam and beam-on-elastic-foundation theories,the position of pipe potential destruction and the strain and deformation distributions along the pipeline were derived.Compared with existing analytical methods and three-dimensional nonlinear finite element analysis,the maximum axial total strains of pipe from the analytical methodology presented are in good agreement with the finite element results at small and intermediate fault movements and become gradually more conservative at large fault displacements.The position of pipe potential failure and the deformation distribution along the pipeline are fairly consistent with the finite element results.展开更多
This paper presents an analytical approach for predicting the detailed out-of-plane wrinkle deformation that formed in the membrane. The analytical wrinkle model is based on the assumption that the membrane is able to...This paper presents an analytical approach for predicting the detailed out-of-plane wrinkle deformation that formed in the membrane. The analytical wrinkle model is based on the assumption that the membrane is able to resist small compressive stress once it has wrinkled. This model is developed for the cases of the rectangular membrane subjected to pure shear and local tension by using the equilibrium equation of the membrane in the deformed configuration. Predictions from this model are compared with the finite element simulation based on the nonlinear buckling finite element method and the results are found to be accurate.展开更多
Large thin walled cylindrical above ground tanks have become more susceptible to failure by buckling during earthquakes. In this study, three different geometries of tanks with H/D (height to diameter) ratios of 2.0...Large thin walled cylindrical above ground tanks have become more susceptible to failure by buckling during earthquakes. In this study, three different geometries of tanks with H/D (height to diameter) ratios of 2.0, 0.56, 1.0, and D/t (depth to thickness) ratios of 960.0, 1,706.67 and 640.0 respectively were analyzed for stability when subjected to the E1 Centro earthquake at the base. The Budiansky and Roth procedure was used to find the buckling loads when the tanks were empty and when they were filled with liquid up to 90% of their depth. Also, nonlinear time history analysis using ANSYS finite element computer program was performed. Analysis results show that the dynamic buckling occurs for empty tanks at very high PGA (peak ground accelerations) which are unrealistic even for major earthquakes. Furthermore, when the tanks filled with water up to 90% of its height, analysis results show that when the H/D ratio reduced by two times (i.e., from 2 to 1), the PGA for the buckling increased by six times (increase from 0.25g to 1 .Sg). Hence, H/D ratio plays an important role in the earthquake stability design of over ground steel tanks.展开更多
This paper presents the characteristics of the crack growth at the interface of rubber-rubber and rubber-steel bimaterials undertensile deformation using the non-linear finite element method. By using the commercial f...This paper presents the characteristics of the crack growth at the interface of rubber-rubber and rubber-steel bimaterials undertensile deformation using the non-linear finite element method. By using the commercial finite element software ABAQUS,the J integral calculations are carried out for the initial interface crack in the interfaces in-between two Neo-Hookean materials,two Mooney-Rivlin materials, Neo-Hookean and Mooney-Rivlin rubbers, Neo-Hookean and Polynomial, Mooney-Rivlin andPolynomial, and the Mooney-Rivlin and steel bi-materials. The computational results of the maximum J integral directionaround the crack tip illustrate the possible direction of crack growth initiation. Furthermore, it is found that the crack bends tothe softer rubber material at a certain angle with the initial crack direction if the crack depth is relatively small. For the crackwith a larger depth, the crack propagates to grow along the interface in-between the bimaterials.展开更多
A high-altitude long-endurance aircraft with high-aspect-ratio wing usually generates large deformation,which brings the geometric nonlinear aeroelastic problems.In recent decades,it has become a key focus of the inte...A high-altitude long-endurance aircraft with high-aspect-ratio wing usually generates large deformation,which brings the geometric nonlinear aeroelastic problems.In recent decades,it has become a key focus of the international researchers of aeroelasticity.But some critical technologies are not developed systematically,such as aerodynamic calculation methods of the curved wing with deformation,moreover,there are few experimental validations of these technologies.In this paper,we established the steady aerodynamic calculating method of the curved wing with quite large deformation based on the extended lifting line method,and calculated the unsteady aerodynamics using the strip theory considering curved surface effects.Combining the structure geometrical nonlinear finite element method,we constructed a systematic analytic approach for the static aeroelasticity and flutter of very flexible wing,and further designed the ground vibration and wind tunnel test to verify this approach.Through the test and the theoretic results comparison,we concluded that the extended lifting line method has adaptable precision for the static aeroealsticity and the strip theory considering curved surface effects for flutter analysis can give exact critical speed and flutter mode when the dynamic stall does not happen.The work in this paper shows that the geometric nonlinear aeroelastic analytic approach for very flexible wing has very high efficiency and adaptable precision.It can be used in the engineering applications,especially the iterated design in preliminary stage.展开更多
文摘The uniform design method was adopted and the twenty-four groups of different geometric and physical pa-rameters were chosen. The finite element model was built. Comparisons between the simulation results and the test re-sults prove that the simulation results are correct. The distribution of the temperature field of the chimney foundationwas analyzed. The multivariate linear regression of the hightest tomperature was performed on the inner wall of thechimney foundation by the numerical calculated results. The fitting property of the highest temperature with six influ-ence factors was obtained. A simple method for the calculation of the temperature field of the chimney foundation wasprovided.
基金Project(50439010) supported by the National Natural Science Foundation of ChinaProject(DUT10ZD201) supported by the Fundamental Research Funds for the Central Universities in China
文摘Existing analytical methods of buried steel pipelines subjected to active strike-slip faults depended on a number of simplifications.To study the failure mechanism more accurately,a refined strain analytical methodology was proposed,taking the nonlinear characteristics of soil-pipeline interaction and pipe steel into account.Based on the elastic-beam and beam-on-elastic-foundation theories,the position of pipe potential destruction and the strain and deformation distributions along the pipeline were derived.Compared with existing analytical methods and three-dimensional nonlinear finite element analysis,the maximum axial total strains of pipe from the analytical methodology presented are in good agreement with the finite element results at small and intermediate fault movements and become gradually more conservative at large fault displacements.The position of pipe potential failure and the deformation distribution along the pipeline are fairly consistent with the finite element results.
文摘This paper presents an analytical approach for predicting the detailed out-of-plane wrinkle deformation that formed in the membrane. The analytical wrinkle model is based on the assumption that the membrane is able to resist small compressive stress once it has wrinkled. This model is developed for the cases of the rectangular membrane subjected to pure shear and local tension by using the equilibrium equation of the membrane in the deformed configuration. Predictions from this model are compared with the finite element simulation based on the nonlinear buckling finite element method and the results are found to be accurate.
文摘Large thin walled cylindrical above ground tanks have become more susceptible to failure by buckling during earthquakes. In this study, three different geometries of tanks with H/D (height to diameter) ratios of 2.0, 0.56, 1.0, and D/t (depth to thickness) ratios of 960.0, 1,706.67 and 640.0 respectively were analyzed for stability when subjected to the E1 Centro earthquake at the base. The Budiansky and Roth procedure was used to find the buckling loads when the tanks were empty and when they were filled with liquid up to 90% of their depth. Also, nonlinear time history analysis using ANSYS finite element computer program was performed. Analysis results show that the dynamic buckling occurs for empty tanks at very high PGA (peak ground accelerations) which are unrealistic even for major earthquakes. Furthermore, when the tanks filled with water up to 90% of its height, analysis results show that when the H/D ratio reduced by two times (i.e., from 2 to 1), the PGA for the buckling increased by six times (increase from 0.25g to 1 .Sg). Hence, H/D ratio plays an important role in the earthquake stability design of over ground steel tanks.
基金supported by the Hong Kong Polytechnic University (Grant No. G-YH32)
文摘This paper presents the characteristics of the crack growth at the interface of rubber-rubber and rubber-steel bimaterials undertensile deformation using the non-linear finite element method. By using the commercial finite element software ABAQUS,the J integral calculations are carried out for the initial interface crack in the interfaces in-between two Neo-Hookean materials,two Mooney-Rivlin materials, Neo-Hookean and Mooney-Rivlin rubbers, Neo-Hookean and Polynomial, Mooney-Rivlin andPolynomial, and the Mooney-Rivlin and steel bi-materials. The computational results of the maximum J integral directionaround the crack tip illustrate the possible direction of crack growth initiation. Furthermore, it is found that the crack bends tothe softer rubber material at a certain angle with the initial crack direction if the crack depth is relatively small. For the crackwith a larger depth, the crack propagates to grow along the interface in-between the bimaterials.
基金supported by the National Natural Science Foundation of China (Grant Nos. 90716006,10902006)the Research Fund for the Doctoral Program of Higher Education of China (Grant No. 20091102110015)
文摘A high-altitude long-endurance aircraft with high-aspect-ratio wing usually generates large deformation,which brings the geometric nonlinear aeroelastic problems.In recent decades,it has become a key focus of the international researchers of aeroelasticity.But some critical technologies are not developed systematically,such as aerodynamic calculation methods of the curved wing with deformation,moreover,there are few experimental validations of these technologies.In this paper,we established the steady aerodynamic calculating method of the curved wing with quite large deformation based on the extended lifting line method,and calculated the unsteady aerodynamics using the strip theory considering curved surface effects.Combining the structure geometrical nonlinear finite element method,we constructed a systematic analytic approach for the static aeroelasticity and flutter of very flexible wing,and further designed the ground vibration and wind tunnel test to verify this approach.Through the test and the theoretic results comparison,we concluded that the extended lifting line method has adaptable precision for the static aeroealsticity and the strip theory considering curved surface effects for flutter analysis can give exact critical speed and flutter mode when the dynamic stall does not happen.The work in this paper shows that the geometric nonlinear aeroelastic analytic approach for very flexible wing has very high efficiency and adaptable precision.It can be used in the engineering applications,especially the iterated design in preliminary stage.