This paper deals with a nonlinear control strategy of induction motor that combines an input-output linearization control technique and a nonlinear observer design. It is well known that induction motors are the most ...This paper deals with a nonlinear control strategy of induction motor that combines an input-output linearization control technique and a nonlinear observer design. It is well known that induction motors are the most widely used motors in electrical appliances, industrial control and automation. However, it is also known that induction motor control is a complex task that is due to its nonlinear characteristics. Two main features of the proposed approach are worth to be mentioned. Firstly, a nonlinear control is carried out using a nonlinear feedback linearization technique involving non available state variable measurements of the induction motor system. Secondly, a nonlinear observer is designed to estimate these pertinent but unmeasurable state variables of the machine. The circle-criterion approach is performed to compute the observer gain matrices as a solution of LMI (linear matrix inequalities) that ensure the stability conditions, in the sense of Lyapunov, of the estimated state error dynamics of the designed observer. Simulation results are presented to validate the effectiveness of the proposed approach.展开更多
The dynamics of a turbogenerator are characterized by a nonlinearly interacting electrical and mechanical subsystems. Accurate and robust state reconstruction by an observer should be based on its nonlinear dynamic be...The dynamics of a turbogenerator are characterized by a nonlinearly interacting electrical and mechanical subsystems. Accurate and robust state reconstruction by an observer should be based on its nonlinear dynamic behavior. Linear and reduced order observers are undesired since intolerable error of state reconstruction may be expected especially if the operating conditions and/or the external disturbances are, as usual in modern power systems, extremely changed. The 2nd authors of this paper had published a methodical design of a full order nonlinear observer for turbogenerator systems and conducted its experimental validation on a 120 MVA and 1,000 MVA synchronous generators at Gud-Power Station in south Munich (Germany) and the Nuclear Power Station of Goesgen (Switzerland). In this paper, the Lyapunov's stability is applied to the mechanical slow motion of nonlinear observer. A second order Lyapunov function is introduced. Based on the energy interpretations of its terms, the necessary and sufficient conditions for the asymptotic stability of this nonlinear observer are derived.展开更多
The induction motor system with fluctuating potential loads is a non-linear complex electro-mechanical system.With beam pumping motors as an example,this paper proposes a multiple factor non-linear mathematical model ...The induction motor system with fluctuating potential loads is a non-linear complex electro-mechanical system.With beam pumping motors as an example,this paper proposes a multiple factor non-linear mathematical model to study the operating performance of the induction motor system.This model consists of non-linear time varying electromagnetic field equations,mechanical wave equations of sucker rods and non-linear coupling equation of reducer and four-bar linkage.The equations are numerically solved by combining time-step finite element method(TS-FEM),finite difference method(FDM),a linear dimension reduction method and the Newton-Raphson method.Simulation results,which are validated by experiments,reveal the influence of the fluctuating potential load on magnetic field distributions,stator and rotor currents,the input power and the power factor.The model and simulation results provide theoretical and technical supports for subsequent researches on model simplification and energy saving technologies.展开更多
文摘This paper deals with a nonlinear control strategy of induction motor that combines an input-output linearization control technique and a nonlinear observer design. It is well known that induction motors are the most widely used motors in electrical appliances, industrial control and automation. However, it is also known that induction motor control is a complex task that is due to its nonlinear characteristics. Two main features of the proposed approach are worth to be mentioned. Firstly, a nonlinear control is carried out using a nonlinear feedback linearization technique involving non available state variable measurements of the induction motor system. Secondly, a nonlinear observer is designed to estimate these pertinent but unmeasurable state variables of the machine. The circle-criterion approach is performed to compute the observer gain matrices as a solution of LMI (linear matrix inequalities) that ensure the stability conditions, in the sense of Lyapunov, of the estimated state error dynamics of the designed observer. Simulation results are presented to validate the effectiveness of the proposed approach.
文摘The dynamics of a turbogenerator are characterized by a nonlinearly interacting electrical and mechanical subsystems. Accurate and robust state reconstruction by an observer should be based on its nonlinear dynamic behavior. Linear and reduced order observers are undesired since intolerable error of state reconstruction may be expected especially if the operating conditions and/or the external disturbances are, as usual in modern power systems, extremely changed. The 2nd authors of this paper had published a methodical design of a full order nonlinear observer for turbogenerator systems and conducted its experimental validation on a 120 MVA and 1,000 MVA synchronous generators at Gud-Power Station in south Munich (Germany) and the Nuclear Power Station of Goesgen (Switzerland). In this paper, the Lyapunov's stability is applied to the mechanical slow motion of nonlinear observer. A second order Lyapunov function is introduced. Based on the energy interpretations of its terms, the necessary and sufficient conditions for the asymptotic stability of this nonlinear observer are derived.
基金supported by the National Natural Science Foundation of China(Grant No.51307050)
文摘The induction motor system with fluctuating potential loads is a non-linear complex electro-mechanical system.With beam pumping motors as an example,this paper proposes a multiple factor non-linear mathematical model to study the operating performance of the induction motor system.This model consists of non-linear time varying electromagnetic field equations,mechanical wave equations of sucker rods and non-linear coupling equation of reducer and four-bar linkage.The equations are numerically solved by combining time-step finite element method(TS-FEM),finite difference method(FDM),a linear dimension reduction method and the Newton-Raphson method.Simulation results,which are validated by experiments,reveal the influence of the fluctuating potential load on magnetic field distributions,stator and rotor currents,the input power and the power factor.The model and simulation results provide theoretical and technical supports for subsequent researches on model simplification and energy saving technologies.