期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
基于PSO的RBF神经网络在热工系统辨识中的应用 被引量:4
1
作者 王学厚 韩璞 +1 位作者 李岩 贾增周 《华北电力大学学报(自然科学版)》 CAS 北大核心 2008年第1期52-56,共5页
在神经网络辨识大迟延对象时,模型类中迟延时间多是根据经验估测的,而不同的值对神经网络辨识的精度和效率就会不同。针对上述问题,将基于正交最小二乘(OLS)算法的径向基(RBF)神经网络和粒子群优化(PSO)算法相结合对热工系统的复杂对象... 在神经网络辨识大迟延对象时,模型类中迟延时间多是根据经验估测的,而不同的值对神经网络辨识的精度和效率就会不同。针对上述问题,将基于正交最小二乘(OLS)算法的径向基(RBF)神经网络和粒子群优化(PSO)算法相结合对热工系统的复杂对象进行辨识仿真。通过对电厂一次风量数据和平均床温数据的仿真实验结果表明,在RBF神经网络对大迟延对象进行辨识时,通过PSO算法进一步确定其最佳迟延时间,从而得到更精确的模型并提高辨识效率,可以取得良好的效果。 展开更多
关键词 粒子群优化算法 非线性权值递减策略 径向基神经网络 正交最小二乘算法 热工系统辨识
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部