期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
求解线性不等式组的一类无约束极值方法 被引量:5
1
作者 顾阿伦 孙永广 +1 位作者 吴宗鑫 陈士俊 《清华大学学报(自然科学版)》 EI CAS CSCD 北大核心 2002年第12期1572-1575,共4页
求解线性不等式组可行解的方法会带来计算的不稳定性或者是低效率。提出了一类新的求解线性不等式组可行解的方法——无约束极值方法。在非空的线性不等式组可行域的相对内域上建立一个非线性极值问题,根据对偶原理,得到一个对偶空间的... 求解线性不等式组可行解的方法会带来计算的不稳定性或者是低效率。提出了一类新的求解线性不等式组可行解的方法——无约束极值方法。在非空的线性不等式组可行域的相对内域上建立一个非线性极值问题,根据对偶原理,得到一个对偶空间的无约束极值问题和原始、对偶变量之间的简单线性映射关系,将原来的求解线性不等式组问题转化为一个无约束极值问题。应用了Newton法和共轭梯度法。数值实验结果表明,此方法是有效的。 展开更多
关键词 线性不等式组 无约束方法 NEWTON法 共轭梯度法 对偶空间 非线性极值问题 求解方法
原文传递
A NONLOCAL NONLINEAR BOUNDARYVALUE PROBLEM FOR THE HEAT EQUATIONS
2
作者 YAN JINHAI(Department of Mathematics, Fudan University, Shanghai 200433, China) 《Chinese Annals of Mathematics,Series B》 SCIE CSCD 1996年第3期365-374,共10页
The existence and limit behaviour of the solution for a kind of nonlocal nonlinear boundaryvalue condition on a part of the boundary is studied for the heat equation, which physicallymeans that the potential is the fu... The existence and limit behaviour of the solution for a kind of nonlocal nonlinear boundaryvalue condition on a part of the boundary is studied for the heat equation, which physicallymeans that the potential is the function of the total flux. When this part of boundary shrinksto a point in a certain wayt this condition either results in a Dirac measure or simply disappearsin the corresponding problem. 展开更多
关键词 Heat equation Nonlinear boundary problem POTENTIAL Limit behavior
原文传递
Degenerate Nonlinear Elliptic Equations Lacking in Compactness
3
作者 Maria MALIN Cristian UDREA 《Chinese Annals of Mathematics,Series B》 SCIE CSCD 2016年第1期53-72,共20页
In this paper, the authors prove the existence of solutions for degenerate elliptic equations of the form-div(a(x)▽_p u(x)) = g(λ, x, |u|^(p-2)u) in R^N, where ▽_pu =|▽u|^(p-2)▽u and a(x) is a degenerate nonnegat... In this paper, the authors prove the existence of solutions for degenerate elliptic equations of the form-div(a(x)▽_p u(x)) = g(λ, x, |u|^(p-2)u) in R^N, where ▽_pu =|▽u|^(p-2)▽u and a(x) is a degenerate nonnegative weight. The authors also investigate a related nonlinear eigenvalue problem obtaining an existence result which contains information about the location and multiplicity of eigensolutions. The proofs of the main results are obtained by using the critical point theory in Sobolev weighted spaces combined with a Caffarelli-Kohn-Nirenberg-type inequality and by using a specific minimax method, but without making use of the Palais-Smale condition. 展开更多
关键词 Degenerate equations P-LAPLACIAN Sobolev weighted spaces Mountain-pass theorem
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部