通过将超大型浮式结构物(a very large floating structure,简称VLFS)模拟为黏弹性薄板,本工作对VLFS的非线性水弹性响应进行了解析研究。运用同伦分析方法(the homotopy analysis method,简称HAM),计算出速度势和板挠度的近似迭代解,...通过将超大型浮式结构物(a very large floating structure,简称VLFS)模拟为黏弹性薄板,本工作对VLFS的非线性水弹性响应进行了解析研究。运用同伦分析方法(the homotopy analysis method,简称HAM),计算出速度势和板挠度的近似迭代解,并根据计算结果着重探究了几个重要的物理参数对黏弹性板形变的影响。结果发现:黏弹性板的挠度随着黏弹性时间、杨氏模量和板厚度增加而减少,而板挠度随着入射波波幅的增加而增加。最后,还对非线性色散关系和波幅之间的联系进行了探讨。展开更多
An analytic approximation method known as the homotopy analysis method(HAM)is applied to study the nonlinear hydroelastic progressive waves traveling in an infinite elastic plate such as an ice sheet or a very large f...An analytic approximation method known as the homotopy analysis method(HAM)is applied to study the nonlinear hydroelastic progressive waves traveling in an infinite elastic plate such as an ice sheet or a very large floating structure(VLFS)on the surface of deep water.A convergent analytical series solution for the plate deflection is derived by choosing the optimal convergencecontrol parameter.Based on the analytical solution the efects of diferent parameters are considered.We find that the plate deflection becomes lower with an increasing Young’s modulus of the plate.The displacement tends to be flattened at the crest and be sharpened at the trough as the thickness of the plate increases,and the larger density of the plate also causes analogous results.Furthermore,it is shown that the hydroelastic response of the plate is greatly afected by the high-amplitude incident wave.The results obtained can help enrich our understanding of the nonlinear hydroelastic response of an ice sheet or a VLFS on the water surface.展开更多
文摘通过将超大型浮式结构物(a very large floating structure,简称VLFS)模拟为黏弹性薄板,本工作对VLFS的非线性水弹性响应进行了解析研究。运用同伦分析方法(the homotopy analysis method,简称HAM),计算出速度势和板挠度的近似迭代解,并根据计算结果着重探究了几个重要的物理参数对黏弹性板形变的影响。结果发现:黏弹性板的挠度随着黏弹性时间、杨氏模量和板厚度增加而减少,而板挠度随着入射波波幅的增加而增加。最后,还对非线性色散关系和波幅之间的联系进行了探讨。
基金supported by the National Natural Science Foundation of China (Grant No. 11072140)
文摘An analytic approximation method known as the homotopy analysis method(HAM)is applied to study the nonlinear hydroelastic progressive waves traveling in an infinite elastic plate such as an ice sheet or a very large floating structure(VLFS)on the surface of deep water.A convergent analytical series solution for the plate deflection is derived by choosing the optimal convergencecontrol parameter.Based on the analytical solution the efects of diferent parameters are considered.We find that the plate deflection becomes lower with an increasing Young’s modulus of the plate.The displacement tends to be flattened at the crest and be sharpened at the trough as the thickness of the plate increases,and the larger density of the plate also causes analogous results.Furthermore,it is shown that the hydroelastic response of the plate is greatly afected by the high-amplitude incident wave.The results obtained can help enrich our understanding of the nonlinear hydroelastic response of an ice sheet or a VLFS on the water surface.