期刊文献+
共找到5篇文章
< 1 >
每页显示 20 50 100
非线性水波的变分原理与反问题
1
作者 张宝善 《常德师范学院学报(自然科学版)》 2001年第3期1-2,23,共3页
利用变分原理推导非线性水波方程以及变分反问题。主要结果是对给定的泛函 ,变分反问题 δH(u)δu =Q(u)具有解簇H(u) =∫(b)∫Q(u)(u) δudx。
关键词 非线性水波 变分原理 变分反问题 解簇 泛函 非线性水波方程
下载PDF
非线性广义水波方程组的孤波解
2
作者 徐昌智 《青岛大学学报(自然科学版)》 CAS 2003年第2期14-18,共5页
采用行波法约化方程 ,根椐领头项分析建立一种变换 ,给出了广义水波等非线性方程的孤波解 。
关键词 非线性广义水波方程 孤波解 行波法 领头项 非线性物理方程 数学物理方程 非线性科学
下载PDF
三峡升船机船-水-厢耦合系统的非线性有限元时域计算 被引量:3
3
作者 阮诗伦 程耿东 《计算力学学报》 EI CAS CSCD 北大核心 2003年第3期290-295,共6页
根据三峡升船机船厢的受力特点,在船厢的纵剖面上建立了非线性水波方程和船-水-厢的耦合运动方程。对非线性水波方程利用摄动理论进行分解得到一阶方程和二阶方程,然后运用伽辽金法得到耦合的有限元离散方程,结合精细积分法进行时域计... 根据三峡升船机船厢的受力特点,在船厢的纵剖面上建立了非线性水波方程和船-水-厢的耦合运动方程。对非线性水波方程利用摄动理论进行分解得到一阶方程和二阶方程,然后运用伽辽金法得到耦合的有限元离散方程,结合精细积分法进行时域计算。计算采用平面八节点等参单元,并给出了若干算例。 展开更多
关键词 三峡升船机 船-水-厢耦合系统 受力特点 非线性水波方程 摄动理论 伽辽金法 精细积分法
下载PDF
NONLINEAR WATER WAVE PROPAGATING OVER UNEVEN BOTTOMS
4
作者 黄虎 周锡 《Transactions of Tianjin University》 EI CAS 1999年第1期21-24,共4页
Various types of wave group solutions of the weakly nonlinear waves may exist over uneven bottoms. In this paper, the variation of the zeroes of the dispersive and nonlinear terms,and the wave group solution in the th... Various types of wave group solutions of the weakly nonlinear waves may exist over uneven bottoms. In this paper, the variation of the zeroes of the dispersive and nonlinear terms,and the wave group solution in the third-order evolution equations are described for the case of mild and locally fastvarying water depths. 展开更多
关键词 weakly nonlineal water waves wave group solution Schrodinger equation
下载PDF
Analytic Approximations for Soliton Solutions of Short-Wave Models for Camassa-Holm and Degasperis-Procesi Equations
5
作者 杨沛 陈勇 李志斌 《Communications in Theoretical Physics》 SCIE CAS CSCD 2010年第6期1027-1034,共8页
In this paper, the short-wave model equations are investigated, which are associated with the Camassa- Holm (CH) and Degasperis Procesi (DP) shallow-water wave equations. Firstly, by means of the transformation of... In this paper, the short-wave model equations are investigated, which are associated with the Camassa- Holm (CH) and Degasperis Procesi (DP) shallow-water wave equations. Firstly, by means of the transformation of the independent variables and the travelling wave transformation, the partial differential equation is reduced to an ordinary differential equation. Secondly, the equation is solved by homotopy analysis method. Lastly, by the transformatioas back to the original independent variables, the solution of the original partial differential equation is obtained. The two types of solutions of the short-wave models are obtained in parametric form, one is one-cusp soliton for the CH equation while the other one is one-loop soliton for the DP equation. The approximate analytic solutions expressed by a series of exponential functions agree well with the exact solutions. It demonstrates the validity and great potential of homotopy analysis method for complicated nonlinear solitary wave problems. 展开更多
关键词 Homotopy analysis method Camassa Holm equation Degasperis-Procesi equation SOLITON
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部