We propose a novel molecular junction with single-walled carbon nanotubes as electrodes bridged by a benzene molecule, in which the electrodes are saturated by different terminations (C-, H- and N-). It is found that ...We propose a novel molecular junction with single-walled carbon nanotubes as electrodes bridged by a benzene molecule, in which the electrodes are saturated by different terminations (C-, H- and N-). It is found that the different terminations at the carbon nanotube ends strongly affect the electronic transport properties of the junction. The current-voltage (I-V) curve of the N-terminated carbon nanotube junction shows a more striking nonlinear feature than that of the C- and H-terminated junctions at small bias. Moreover, the negative differential resistance behaviors can be observed significantly in the N-terminated carbon nanotube junction, whereas not in the other two cases.展开更多
基金supported by the Natural Science Foundation of Shandong Province of China (Grant Nos. ZR2009AL004 and ZR2010AM037)
文摘We propose a novel molecular junction with single-walled carbon nanotubes as electrodes bridged by a benzene molecule, in which the electrodes are saturated by different terminations (C-, H- and N-). It is found that the different terminations at the carbon nanotube ends strongly affect the electronic transport properties of the junction. The current-voltage (I-V) curve of the N-terminated carbon nanotube junction shows a more striking nonlinear feature than that of the C- and H-terminated junctions at small bias. Moreover, the negative differential resistance behaviors can be observed significantly in the N-terminated carbon nanotube junction, whereas not in the other two cases.