The purpose of using life extending control for Black Hawk UH-60 helicopter is to make a trade-off between the handling qualities and the service life of critical components. An increase in service life span results i...The purpose of using life extending control for Black Hawk UH-60 helicopter is to make a trade-off between the handling qualities and the service life of critical components. An increase in service life span results in enhanced safety and the reduction in maintenance costs. This paper presents a design methodology of life extending control for structural durability and high performance of mechanical system, which is based on an explicit dynamic inversion control scheme. A real-time nonlinear fatigue crack growth model is built to predict fatigue damage resulting from the impact of cyclic bending stress on rotor shaft, which serves as an indicator of service life. The 4-axis gainscheduled flight controller, whose gains are adjusted as a function of damage and flight velocity, is designed to regulate roll attitude, pitch attitude, vertical velocity and yaw rate. The nonlinear system simulation results show that the responses can meet the requirements on ADS-33 Level 1 handling qualities and that the 4-axis decoupling control is realized. As the damage increases, the tracking performance is slightly degraded, which results in smaller transients in bending moment response.展开更多
Based on the nonlinear continuum damage model (CDM) developed by Chaboehe, a modified model for high cycle fatigue of TC4 alloy was proposed. Unsymmetrical cycle fatigue tests were conducted on rod specimens at room...Based on the nonlinear continuum damage model (CDM) developed by Chaboehe, a modified model for high cycle fatigue of TC4 alloy was proposed. Unsymmetrical cycle fatigue tests were conducted on rod specimens at room temperature. Then the material parameters needed in the CDM were obtained by the fatigue tests, and the stress distribution of the specimen was calculated by FE method. Compared with the linear damage model (LDM), the dam- age results and the life prediction of the CDM show a better agreement with the test and they are more precise than the LDM. By applying the CDM developed in this study to the life prediction of aeroengine blades, it is concluded that the root is the most dangerous region of the whole blade and the shortest life is 58 211 cycles. Finally, the Cox propor- tional hazard model of survival analysis was applied to the analysis of the fatigue reliability. The Cox model takes the covariates into consideration, which include diameter, weight, mean stress and tensile strength. The result shows that the mean stress is the only factor that accelerates the fracture process.展开更多
基金Supported by the National Natural Science Foundation of China(No.61170328)
文摘The purpose of using life extending control for Black Hawk UH-60 helicopter is to make a trade-off between the handling qualities and the service life of critical components. An increase in service life span results in enhanced safety and the reduction in maintenance costs. This paper presents a design methodology of life extending control for structural durability and high performance of mechanical system, which is based on an explicit dynamic inversion control scheme. A real-time nonlinear fatigue crack growth model is built to predict fatigue damage resulting from the impact of cyclic bending stress on rotor shaft, which serves as an indicator of service life. The 4-axis gainscheduled flight controller, whose gains are adjusted as a function of damage and flight velocity, is designed to regulate roll attitude, pitch attitude, vertical velocity and yaw rate. The nonlinear system simulation results show that the responses can meet the requirements on ADS-33 Level 1 handling qualities and that the 4-axis decoupling control is realized. As the damage increases, the tracking performance is slightly degraded, which results in smaller transients in bending moment response.
基金Supported by National Natural Science Foundation of China(No.60879002)Key Technologies R and D Program of Tianjin (No.10ZCKFGX03800)
文摘Based on the nonlinear continuum damage model (CDM) developed by Chaboehe, a modified model for high cycle fatigue of TC4 alloy was proposed. Unsymmetrical cycle fatigue tests were conducted on rod specimens at room temperature. Then the material parameters needed in the CDM were obtained by the fatigue tests, and the stress distribution of the specimen was calculated by FE method. Compared with the linear damage model (LDM), the dam- age results and the life prediction of the CDM show a better agreement with the test and they are more precise than the LDM. By applying the CDM developed in this study to the life prediction of aeroengine blades, it is concluded that the root is the most dangerous region of the whole blade and the shortest life is 58 211 cycles. Finally, the Cox propor- tional hazard model of survival analysis was applied to the analysis of the fatigue reliability. The Cox model takes the covariates into consideration, which include diameter, weight, mean stress and tensile strength. The result shows that the mean stress is the only factor that accelerates the fracture process.