In this work, sesamin and sesamolin is separated and purified by SMB (simulated moving bed) chromatography. Purity of sesamin and sesamolin can reach 99.2% and 99.9 %, and they can be recovered by 99.9% and 99.4%, r...In this work, sesamin and sesamolin is separated and purified by SMB (simulated moving bed) chromatography. Purity of sesamin and sesamolin can reach 99.2% and 99.9 %, and they can be recovered by 99.9% and 99.4%, respectively. Concentrations of the extract and raffinate was monitored and periodical change of the concentration was observed on experiment. Effects of non-linear adsorption, dead volume, and temperature on the separation are reviewed by the triangle theory to explain the periodical change of concentration. It is found that dead volume has little effect, and temperature fluctuation significantly affects thc separation by SMB. The temperature seriously affects the robust operation of SMB due to the change of Henry's constant, which will change the selectivity and restrain the productivity. Although the productivity in this study is only 0.0416 g/L-hr, the cost of the stationary phase used in this study is much lower than that of packed in analytical column. By using this stationary phase, the authors are still able to separate the mixture of sesamin and sesmolin. This will economically attract attention for the application of SMB to purify bioactive compounds on developing botanical drugs.展开更多
Control performance monitoring has attracted great attention in both academia and industry over the past two decades. However, most research efforts have been devoted to the performance monitoring of linear control sy...Control performance monitoring has attracted great attention in both academia and industry over the past two decades. However, most research efforts have been devoted to the performance monitoring of linear control systems, without considering the pervasive nonlinearities(e.g. valve stiction) present in most industrial control systems. In this work, a novel probability distribution distance based index is proposed to monitor the performance of non-linear control systems. The proposed method uses Hellinger distance to evaluate change of control system performance. Several simulation examples are given to illustrate the effectiveness of the proposed method.展开更多
Efficient use of industrial equipment, increase its availability, safety and economic issues spur strong research on maintenance programs based on their operating conditions. Machines normally operate in a linear rang...Efficient use of industrial equipment, increase its availability, safety and economic issues spur strong research on maintenance programs based on their operating conditions. Machines normally operate in a linear range, but when malfunctions occur, nonlinear behavior might set in. By studying and comparing five nonlinear features, which listed in decreasing order by their damage detection capability are: LLE (largest Lyapunov exponent), embedded dimension, Kappa determinism, time delay and cross error values; i.e., LLE performs best. Using somewhat similar ideas from Chaos control, i.e., vary the "mass imbalance" forcing parameters, we aim to stabilize the Lorenz equation. Quite interestingly, for certain imbalance excitation values, the system is stabilized. The previous even when paradigmatically chaotic parameters for Lorenz system are used (plus our forcing terms). This quasi-control approach is validated studying signals obtained from the previously mentioned lab test. Finally, it is concluded that analyzing and comparing nonlinear features extracted from baseline vs. malfunction condition (test acquired), one might increase the efficiency and the performance of machine condition monitoring.展开更多
In this paper the concept of a nonlinear verticumtype observation system is introduced. These systems are composed from several "subsystems" connected sequentially in a particular way: a part of the state variables...In this paper the concept of a nonlinear verticumtype observation system is introduced. These systems are composed from several "subsystems" connected sequentially in a particular way: a part of the state variables of each "subsystem" also appears in the next "subsystem" as an "exogenous variable" which can also be interpreted as a con trol generated by an "exosystem". Therefore these "subsystems" are not observation systems, but formally can be considered as controlobservation systems. The problem of observability of such systems can be reduced to rank conditions on the "subsystems". Indeed, under the condition of Lyapunov stability of an equilibrium of the "large", verticumtype system, it is shown that the Kalman rank condition on the linearization of the "subsystems" implies the observability of the original, nonlinear verticumtype system. For an illustration of the above linearization result, a stagestructured fishery model with reserve area is considered. Observability for this system is obtained by applying the above linearization and decomposition approach. Furthermore, it is also shown that, applying an appropriate observer design method to each subsystem, from the observa tion of the biomass densities of the adult (harvested) stage, in both areas, the biomass densities of the prerecruit stage can be efficiently estimated.展开更多
文摘In this work, sesamin and sesamolin is separated and purified by SMB (simulated moving bed) chromatography. Purity of sesamin and sesamolin can reach 99.2% and 99.9 %, and they can be recovered by 99.9% and 99.4%, respectively. Concentrations of the extract and raffinate was monitored and periodical change of the concentration was observed on experiment. Effects of non-linear adsorption, dead volume, and temperature on the separation are reviewed by the triangle theory to explain the periodical change of concentration. It is found that dead volume has little effect, and temperature fluctuation significantly affects thc separation by SMB. The temperature seriously affects the robust operation of SMB due to the change of Henry's constant, which will change the selectivity and restrain the productivity. Although the productivity in this study is only 0.0416 g/L-hr, the cost of the stationary phase used in this study is much lower than that of packed in analytical column. By using this stationary phase, the authors are still able to separate the mixture of sesamin and sesmolin. This will economically attract attention for the application of SMB to purify bioactive compounds on developing botanical drugs.
基金Supported by the National Natural Science Foundation of China(61134007,61203157)the National Science Fund for Outstanding Young Scholars(61222303)+1 种基金the Fundamental Research Funds for the Central Universities(22A20151405)Shanghai R&D Platform Construction Program(13DZ2295300)
文摘Control performance monitoring has attracted great attention in both academia and industry over the past two decades. However, most research efforts have been devoted to the performance monitoring of linear control systems, without considering the pervasive nonlinearities(e.g. valve stiction) present in most industrial control systems. In this work, a novel probability distribution distance based index is proposed to monitor the performance of non-linear control systems. The proposed method uses Hellinger distance to evaluate change of control system performance. Several simulation examples are given to illustrate the effectiveness of the proposed method.
文摘Efficient use of industrial equipment, increase its availability, safety and economic issues spur strong research on maintenance programs based on their operating conditions. Machines normally operate in a linear range, but when malfunctions occur, nonlinear behavior might set in. By studying and comparing five nonlinear features, which listed in decreasing order by their damage detection capability are: LLE (largest Lyapunov exponent), embedded dimension, Kappa determinism, time delay and cross error values; i.e., LLE performs best. Using somewhat similar ideas from Chaos control, i.e., vary the "mass imbalance" forcing parameters, we aim to stabilize the Lorenz equation. Quite interestingly, for certain imbalance excitation values, the system is stabilized. The previous even when paradigmatically chaotic parameters for Lorenz system are used (plus our forcing terms). This quasi-control approach is validated studying signals obtained from the previously mentioned lab test. Finally, it is concluded that analyzing and comparing nonlinear features extracted from baseline vs. malfunction condition (test acquired), one might increase the efficiency and the performance of machine condition monitoring.
文摘In this paper the concept of a nonlinear verticumtype observation system is introduced. These systems are composed from several "subsystems" connected sequentially in a particular way: a part of the state variables of each "subsystem" also appears in the next "subsystem" as an "exogenous variable" which can also be interpreted as a con trol generated by an "exosystem". Therefore these "subsystems" are not observation systems, but formally can be considered as controlobservation systems. The problem of observability of such systems can be reduced to rank conditions on the "subsystems". Indeed, under the condition of Lyapunov stability of an equilibrium of the "large", verticumtype system, it is shown that the Kalman rank condition on the linearization of the "subsystems" implies the observability of the original, nonlinear verticumtype system. For an illustration of the above linearization result, a stagestructured fishery model with reserve area is considered. Observability for this system is obtained by applying the above linearization and decomposition approach. Furthermore, it is also shown that, applying an appropriate observer design method to each subsystem, from the observa tion of the biomass densities of the adult (harvested) stage, in both areas, the biomass densities of the prerecruit stage can be efficiently estimated.